LECTURE 6

Standing wave ratio

\[
\Gamma_1 = \frac{S-1}{S+1} \quad S = \frac{1 + \sqrt{1}}{1 - \sqrt{1}}
\]

The constant \(\Gamma \) circle intersects the real axis in two points. By definition, \(S \geq 1 \) = only the intersection point on the right-hand side of the chart's center gives \(S \).

Impedance to Admittance Calculations

Impedance: \(Z = R + jX \)

Admittance: \(Y = \frac{1}{Z} = \frac{1}{R + jX} = \frac{R - jX}{R^2 + X^2} = \frac{1}{Z} + j \frac{X}{Z} \)

Normalized admittance

\[
\tilde{Y} = \frac{Y}{Y_0} = \frac{G}{Y_0} + j \frac{B}{Y_0} = \tilde{G} + j \tilde{B}
\]

\(Y_0 = \frac{1}{Z_0} \) = characteristic admittance of the line

\[
\tilde{G} = \frac{G}{Y_0} = \frac{G}{Z_0}, \quad \tilde{B} = \frac{B}{Y_0} = \frac{B}{Z_0}
\]

\(\tilde{Y} = \frac{Y}{Y_0} = \frac{Z_0}{Z} = \frac{1}{\tilde{Z}} \) (normalized values)
\[\tilde{Z}_{in} = \frac{1}{\tilde{Z}_{L}} = \frac{1-e^{-j\pi}}{1+e^{-j\pi}} \]

Rotation by \(\frac{3}{4}\) on Smith chart transforms \(\tilde{Z}_{L}\) into \(\tilde{Z}_{L}^*\).

STEP 1 Place \(\tilde{Z}_{L}\) on Smith chart (\(P_{\tilde{Z}_{L}}\))

STEP 2 Draw constant \(S\) circle

STEP 3 Draw radius from center to \(\tilde{Z}_{L}\) and extend the radius to the other side

STEP 4 New intersection gives \(\tilde{Z}_{L}^*\)

Single-Stub Matching

- **Shunt** - use \(Z's\)
- **Series** - use \(Y's\)

\[Y_{in} = Y_d + Y_s \]

\[Y_{in} = Y_{in}' + Y_s = 1 = Y_o \rightarrow \text{matching} \]

Double-Stub Matching

\[d_1 : \text{Re}(Y_d) = 1 \]
\[l : \text{Im}(Y_s) = -\text{Im}(Y_d) \]

\[Y_{in} = Y_{in}' + Y_s = 1 = Y_o \rightarrow \text{matching} \]

Manual Adjustment

\(d_1, d_2\) degrees of freedom