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Abstract—This paper demonstrates, through real-world field
tests, an ambient radio frequency (RF) energy harvesting system
(fabricated on low-cost FR4) capable of harvesting from all
surrounding ultra high frequency (UHF) TV and FM towers in
all UHF-TV and FM frequencies simultaneously to perpetually
power a wireless sensor node. The system achieves -10 dB match-
ing across the entire frequency bands. The UHF-TV portion
harvested as much as 231µW (885µW for FM). The alignment-
free, channel-agnostic nature demonstrates potential for ambient
RF harvesting’s adaption by users outside of the RF community
who are not expected to be familiar with antenna alignment and
frequency selection.

Index Terms—ambient RF energy harvesting, energy harvester,
wideband, isotropic, antenna, matching, wireless sensor, TV, FM.

I. INTRODUCTION

ENERGY harvesting saves labor costs associated with
replacing batteries of wireless sensor nodes (WSNs)

and internet-of-things (IoT) devices and allows them to be
deployed in hard-to-reach places (e.g., hazardous areas, com-
plex structures, sealed systems, etc.) where replacing batteries
would be impractical. RF (radio frequency) harvesting is
available day and night [1] and can be implemented in tandem
with photovoltaic harvesting to complement each other [2]–[5].
Long wavelengths (sub-GHz) of ultra high frequency (UHF)
TV and FM broadcast signals allow less attenuation through
mediums and enable appropriately sized antennas to harvest
more energy without needing to form arrays [6].

UHF-TV signals are primarily horizontally polarized. This
work combines energy harvested via north-south and east-west
polarized UHF-TV antennas as well as a vertically polarized
FM antenna (dual-band horizontal antennas require more area)
by connecting multiple power management units (PMUs) to
one capacitor bank (Fig. 1). The FM portion was detailed in
preceding publications [7], [8]. This paper details the UHF-
TV portion (Fig. 2) and presents a combined full UHF-TV
and FM band, quasi-isotropic, ambient RF energy harvester.
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Fig. 1. The harvester block diagram combining UHF-TV and FM.
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Fig. 2. The UHF-TV harvester. Two pairs of antennas are used, because the
matching/rectifying circuits cover upper and lower bands separately.
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II. THE UHF-TV ENERGY HARVESTER ANTENNA DESIGN

Fig. 3 shows simulated and measured gain of the antennas
fabricated on MG Chemicals 555 (35µm copper, 1.6 mm FR4,
ε= 4.2 and δ = 0.015 at 1 GHz). A triangular sheet dipole with
rectangular ends for wider bandwidth is on each front and rear
side. The feeds are 50 Ω. The dimensions were exhaustively
swept in a full-wave electromagnetic simulation tool (CST
Microwave Studio) to balance S11 and gain. Front and rear an-
tenna gains combined is 1 or greater across all θ and φ, allow-
ing isotropic harvesting, i.e., Gfront(θ, φ) +Grear(θ, φ) ≥ 1.
If a horizontally polarized wave arrives from the φ = 45 °
direction, half of the received power would be contributed by
the front antenna and the other half by the rear antenna. These
are not one individual antenna with an isotropic gain; such
hypothetical antenna does not exist in real life. Fig. 4 shows
simulated and measured radiation efficiency. The radiation
efficiency is above 85 % across the entire UHF-TV band.
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Fig. 3. Realized gain of the UHF-TV antennas (linear scale, angle in degrees).
Front and rear antenna gains combined is 1 or greater across all θ and φ.

Fig. 4. Simulated and measured radiation efficiency of the UHF-TV antenna.

Fig. 5 shows simulated and measured S11 while the antenna
substrate is isolated from the rest of the harvester. The antenna
achieves -10 dB matching across the entire UHF-TV band (of
the United States) and fractional bandwidth (FBW) as wide as
36 %. Fig. 6 shows measured S-parameters while the harvester
is assembled as depicted in Fig. 7 (which shows the combined
UHF-TV and FM harvester powering the WSN). The top
(port 1) and bottom (port 2) substrate antennas achieve -10 dB
matching across the entire UHF-TV band. The substrates are
608 mm apart, separated by a copper-backed PMU/WSN plate,
and rotated 45 ° relative to each other around the z axis for
isolation (Fig. 2). The TV antennas are horizontally polarized,
whereas the FM antenna (port 3) is vertically polarized. The
antennas achieve 30 dB isolation among one another across
the entire UHF-TV band.

Fig. 5. Simulated and measured S11 (isolated antenna). The antenna achieves
-10 dB matching across the entire UHF-TV band and FBW as wide as 36 %.

Fig. 6. Measured S-parameters while the harvester is assembled. The top
(port 1) and bottom (port 2) substrate antennas achieve -10 dB matching across
the entire UHF-TV band. The antennas, including the FM antenna (port 3),
achieve 30 dB isolation among one another across the entire UHF-TV band.

Fig. 7. The UHF-TV and FM harvester powering the WSN at the test site.
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III. THE MATCHING AND RECTIFYING CIRCUIT DESIGN

Fig. 8 shows schematics of the matching and rectifying
circuits. The rectifying circuit was fabricated on MG Chem-
icals 555. The impedance was measured, component values
were exhaustively swept in Keysight Advanced Design System
(ADS) to match the impedance, the impedance was measured
again after placing the component nearest to the rectifying cir-
cuit, and the process was repeated until the component nearest
to the antenna was placed. Two matching network stages and
one rectifying stage per circuit were used to minimize losses
introduced by components, while FR4 was chosen for its low
cost and mechanical robustness despite being relatively lossy.
The PMU (Texas Instruments BQ25570) was represented by a
3.3 kΩ load. (The PMU has maximum power point tracking.)
Fig. 9 shows simulated and measured S11. The two circuits
for the upper and lower half bands together achieve -10 dB
matching across the entire UHF-TV band and across all power
levels from -20 to 0 dBm. The combined FBWs are 27, 31,
and 31 % for -20, -10, and 0 dBm, respectively. The FBWs
for upper and lower band circuits are 14, 21, 23 and 17, 18,
15 %, respectively. Fig. 10 shows measured RF-dc efficiency
(η) with varying loads (i.e, compatibility with various loads).
Peak RF-dc η occurs at 4.7–5.6 kΩ. Fig. 10 shows RF-dc η
across the UHF-TV band at 4.7 kΩ (i.e., compatibility with
towers broadcasting in various UHF-TV frequencies). Fig.
11 shows measured RF-dc η and output potential. Note that
RF-dc η increasing with input power is a characteristic of
Schottky diodes [9], [10]. The PMU requires 100 mV and
5µW (330 mV and 15µW for cold-start). Fig. 12 shows
measured sensitivity and cold-start sensitivity. As low as -18
and -13 dBm are achieved, respectively. Single-tone RF input
was used for these measurements. Multi-tone RF inputs such
as UHF-TV get added in time domain and yield higher output
potential.

IV. SYSTEM DEMONSTRATION AND COMPARISON TO
RELATED WORK

A. System Demonstration

Fig. 13 shows the power spectrum measured using the
harvester antennas at the test site (33.7759, -84.3898). The
power density was measured to be 1.2 mW/m2 for the UHF-TV
band (3.1 mW/m2 for the FM band). The highest contribution
comes from channel 18 for UHF-TV (91.1 MHz for FM). Fig.
14 shows the power harvested throughout a day. The UHF-
TV portion consistently harvested 200µW or higher, reaching
as high as 231µW. Fig. 14 shows the UHF-TV harvester’s
charge cycle powering the WSN. The WSN (Kontakt.io S18-
3) was powered for 16 min 40 s after every 26 min 40 s of
charging. Measured RF-dc η was 40 %. Capacitance (three
parallel Seiko CPH3225A) was chosen to provide enough
current to turn on the WSN. Charge cycle measurement does
not exist for combined UHF-TV and FM harvesting, because
the FM harvester, even on its own, can power the WSN without
periodically shutting down [7], [8].
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Fig. 8. The matching and rectifying circuits for the upper half (top) and the
lower half (bottom) of the UHF-TV band.

Fig. 9. Simulated and measured S11 of the matching and rectifying circuits.
The circuits together achieve -10 dB matching across the entire UHF-TV band
and across all power levels from -20 to 0 dBm.

Fig. 10. Measured RF-dc η of the matching and rectifying circuits with
varying load (left) and across the UHF-TV band (right).

Fig. 11. Measured RF-dc η (left) and output potential (right) of the matching
and rectifying circuits. The PMU requires 100 mV (330 mV for cold-start).

Fig. 12. Measured sensitivity and cold-start sensitivity of the matching and
rectifying circuits. As low as -18 and -13 dBm are achieved, respectively.
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TABLE I
COMPARISON OF AMBIENT RF ENERGY HARVESTING WORK

antenna radiation pattern (physical area) -10 dB FBW RF-dc η harvested power final load
[11] unidirectional (0.39λ2) 2 % @ -15 dBm 14 % @ -20 dBm 49µW @ NA WSN
[12] omnidirectional (NA) NA 0.8 % @ -20 dBm 0.3µW @ 0.2 km capacitor
[13] unidirectional (2.1λ2) 2 % @ -20 dBm 28 % @ -20 dBm 80µW @ NA resistor
[14] unidirectional (0.70λ2) 3 % @ -20 dBm 30 % @ -20 dBm NA open
[15] unidirectional (0.09λ2) 33 % @ -15 dBm 15 % @ -20 dBm 15µW @ 0.05 km resistor
[16] bidirectional (0.25λ2) 9 % @ -10 dBm 32 % @ -20 dBm 6.2µW @ NA resistor
[17] omnidirectional (0.012λ2) 4 % @ -10 dBm 5 % @ -20 dBm NA @ 6.3 km WSN
[18] unidirectional (0.20λ2) 2 % @ -15 dBm 7 % @ -15 dBm 17µW @ 6.3 km µ-controller
[19] bidirectional (NA) 7 % @ -20 dBm NA 3.6µW @ NA LED
[20] unidirectional (NA) NA NA NA @ 4.2 km WSN

[21], [22] unidirectional (NA) NA 25 % @ -5 dBm 60µW @ 4.1 km sensor
[23], [24] bidirectional (0.17λ2) 32 % @ -20 dBm 30 % @ -20 dBm 67µW @ NA resistor
this work quasi-isotropic (0.30λ2) 27 % @ -20 dBm 28 % @ -20 dBm 231µW @ 5.83 km WSN

53 s

UHF-TV band

Fig. 13. Spectrum measured using the harvester antennas at the test site.

26 min 40 s
charging
capacitor

16 min 40 s
WSN on

Fig. 14. Power harvested throughout a day at the test site (left) and UHF-TV
harvester charge cycle powering the WSN (right). As much as 231µW and
885µW were harvested from UHF-TV and FM bands, respectively.

B. Comparison to Related Work

Table I compares ambient RF energy harvesting work [11]–
[24]. The frequency band showing the best performance was
selected for each work. Only this work is capable of harvesting
from all directions using its quasi-isotropic antenna setup. The
antenna of this work has competitive size while achieving wide
bandwidth. (Wider bandwidth requires larger antenna size [6].)
Only this and one other work achieve double-digit -10 dB
FBW at -20 dBm. The RF-dc η of this work is among the
leaders, again, while achieving wide bandwidth. (Lower loss is
easier to achieve with narrow-band matching.) No other work
was able to harvest triple-digits of µW. This work is among
the few that demonstrate powering a WSN. WSN/IoT devices
have power and potential requirements for cold-start and for
staying on. Without these constraints, wide bandwidth and
high efficiency are easier to achieve and thus have diminished
significance. Systems that do not demonstrate powering such
load may not be capable of providing useful function.

Only this work allows harvesting from all surrounding
towers simultaneously, whereas the others focus on harvesting
from single sources at specific frequencies using directional
antennas. Requiring careful alignment with calibration equip-
ment prevents ambient RF energy harvesting from being
adapted outside of the RF community. It is also impractical
when deploying in mass scale, when towers are visually
obstructed, or when it is unknown which tower provides the
most power to a given location [25]. Only this work addresses
these issues.

V. CONCLUSION

This work demonstrates an ambient RF energy harvesting
system (fabricated on low-cost FR4) capable of harvesting
from all surrounding UHF-TV and FM towers in all UHF-
TV and FM frequencies simultaneously to perpetually power
a WSN. Front and rear antenna gains combined is 1 or
greater across all θ and φ, allowing isotropic harvesting. The
system achieves -10 dB matching across the entire frequency
bands. The system is as sensitive as -18 dBm. The UHF-TV
portion harvested as much as 231µW (885µW for FM). The
alignment-free, channel-agnostic nature of this work demon-
strates the potential for widespread adaption of ambient RF
energy harvesting.
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