Problem 1:

\[Y(x,t) = 1.5 \cos \left(2\pi \cdot 10^8 t - \frac{2\pi}{3} x + \frac{\pi}{3} \right) e^{-0.0005x} \text{ (Volts)} \]

(a) The Amplitude is 1.5 Volts at spatial position \(x = 0 \text{m} \). It has an attenuation of \(e^{-0.0005x} \).

The Period, \(T = \frac{2\pi}{2\pi \cdot 10^8} = 10^{-6} \text{s} \)

The frequency is \(1/T = 10^8 \text{ Hz} = 100 \text{ MHz} \)

The wavelength, \(\lambda = c/f = 3 \text{ m} \)

The phase, \(\phi = \pi/3 \text{ rad} \)

The attenuation factor, \(\alpha = 0.005 \text{ Np/m} \) (assuming the negative sign is intrinsic to \(+x\) prop).

(b) \(\beta = \frac{2\pi}{\lambda} = \frac{2\pi}{3} \text{ (rad/m)} \)

\(\omega = 2\pi f = 2\pi \cdot 10^8 \text{ (rad/s)} \)

(c) The wave propagates in the \(+x\) direction due to negative sign in front of \(\beta \). This occurs due to a phase front needing to remain constant – increasing time requires a positive increase in \(x \) to maintain neutrality with time for the phase front.

(d) The amplitude at \(t = 10^{-5} \text{s} \) and \(x = 3000 \text{m} \) is given by \(1.5 \cos(2000\pi - 2000\pi + \pi/3)e^{-1.5} \)

This value is .167 Volts which satisfies the .1V requirement for reception.

Problem 2:

(a) \(L = 0.1 \text{m}, f = 1 \text{ GHz} \Rightarrow \lambda = 0.3 \text{m}, \text{ so } L/\lambda = 1/3 >> 0.01 \Rightarrow \text{do not ignore tline effects} \)

(b) \(L = 1 \text{m}, f = 1.8 \text{ GHz} \Rightarrow \lambda = 0.1667 \text{m}, \text{ so } L/\lambda = 6 >> 0.01 \Rightarrow \text{do not ignore tline effects} \)

(c) \(L = 0.01 \text{m}, f = 0.9 \text{ GHz} \Rightarrow \lambda = 0.333 \text{m}, \text{ so } L/\lambda = 0.03 > 0.01 \Rightarrow \text{do not ignore tline effects (close)} \)

(d) \(L = 0.05 \text{m}, f = 60 \text{ GHz} \Rightarrow \lambda = 0.005 \text{m}, \text{ so } L/\lambda = 10 >> 0.01 \Rightarrow \text{do not ignore tline effects} \)
Problem 3:

(a) \(\Gamma = \frac{30-j60-50}{30-j60+50} = .2 - .6j \)

(b) \(\text{SWR} = \frac{1+|\Gamma|}{1-|\Gamma|} = \frac{1+.6325}{1-.6325} = 4.4415 \)

(c) \(Z_{in}(.35\lambda) = \frac{(30-j60)+j50\tan(7\pi)}{50+j(30-j60)\tan(7\pi)}(50) = 78.4644 + j98.2431 \)

(d) Under a perfect match, 10W can be delivered. This can be interpreted as the input power to the system is 10W. For the match at hand, \(|\Gamma| = .6325 \). Thus, the power received is given by \((1-|\Gamma|^2)P_{in} = 6W \)

Problem 4:

(a) \(Z_o = 50\Omega, L = \lambda/4, Z_L = 60\Omega \). Find the input impedance. For a quarter-wave length section, the input impedance is given by \(Z_{in} = Z_o^2/Z_L = 2500/60 = 41.67\Omega \)

(b) For an open circuit, \(\Gamma = 1 \). For an open circuit \(Z_{in} = -jZ_o\cot(\beta l) \). So for \(L = \lambda/8 \), \(Z_{in} = -j50\Omega \)
 This circuit behaves as a capacitor due to the negative complex impedance.

(c) For a short circuit, \(\Gamma = -1 \). For a short circuit, \(Z_{in} = jZ_o\tan(\beta l) \). For for \(L = \lambda/6 \), \(Z_{in} = j86.6\Omega \)
 This circuit behaves as an inductor due to the positive complex impedance.

Problem 5:

(a) Because the load is a short circuit, the reflection coefficient is -1.

(b) Because the input impedance is dependent on a tangent function, it is periodic with \(\pi \). Thus, every \(.5\lambda \) returns to the load impedance. Thus, \(2.3\lambda \) is equivalent to \(.3\lambda \). So, \(Z_{in} = j50\tan(.6\pi) = -j153.88\Omega \).

(c) The input admittance is given by \(1/Z_{in} = .0065j \) S (Siemens or \(\Omega^{-1} \)).
Problem 6:

\(Z_o = 50 \, \Omega \)
\(Z_l = 75 - j20 \, \Omega \)
\(f_o = 6 \, \text{GHz} \)

(a) Because the real component of the load is larger than \(Z_o \), the correct circuit topology to be used is:

Using the design equations,

\[
B = \frac{X_L \pm \sqrt{R_L/Z_o \left(R_L^2 + X_L^2 - Z_o R_L \right)}}{R_L^2 + X_L^2} = .006373, -.013015
\]
\[
X = \frac{1}{B} + \frac{X_L Z_o}{R_L} = \frac{Z_o}{B R_L} = 38.9444, -38.9444
\]

For (.006373, 38.9444)

\[
L = \frac{X}{\omega} = \frac{38.9444}{2\pi \cdot 6 \cdot 10^9} = 1.033 \, \text{nH}
\]
\[
C = \frac{B}{\omega} = \frac{.006373}{2\pi \cdot 6 \cdot 10^9} = .16913 \, \text{pF}
\]

For (-.013015, -38.9444)

\[
L = \frac{1}{\omega B} = 2.0381 \, \text{nH}
\]
\[
C = \frac{1}{\omega X} = .68112 \, \text{nF}
\]

\(Z_{in} = j\omega L + j\omega C||Z_l \)

This results in the following gamma plot:

Using the cursor, \(\Delta f = 24.45\% \, (0.05 \, \Gamma_m) \)
For the second set (2.0381 nH, .68112 pF)

\[Z_{in} = -\frac{j}{\omega C} + \left(\frac{-j}{\omega L}\right) || Z_L \]

This results in the following gamma plot:

![Gamma Plot](image)

Using the cursors, \(\Delta f = 18.02\% \)

(b) \(Z_L = 25-j20 \, \Omega \). This results in the second circuit topology for matching:

![Circuit Diagram](image)

Using the design equations:

\[
X = \pm \sqrt{R_L(Z_L - R_L)} - X_L = 45, -5 \\
B = \pm \sqrt{\frac{(Z_o - R_L)/R_L}{Z_o}} = \pm .02
\]

This results in the first LC pair as \((B, X) \Rightarrow L = \frac{X}{\omega} = 1.1937 \, nH \\
C = \frac{B}{\omega} = .53052 \, pF\]

This produces a \(Z_{in} \) of

\[Z_{in} = j\omega C || (j\omega L + Z_L) \]
This additionally yields the following gamma plot

![Gamma Plot](image)

This results in a $\Delta f = 9.7\%$

The second pair of LC (for the negative values)

\[
L = \frac{1}{\omega B} = 1.3263 \, nH
\]
\[
C = \frac{1}{\omega X} = 5.3052 \, pF
\]

This produces a Z_{in} of:

\[
Z_{in} = \left(\frac{-j}{\omega L}\right) || \left(\frac{-j}{\omega C} + Z_L\right)
\]

This yields a gamma plot of:

![Gamma Plot](image)

This produces $\Delta f = 19.85\%$
Problem 7:

\[f = 100 \text{ MHz}, \quad Z_o = 300 \Omega, \quad Z_L = 73 \Omega \]

(a) Quarter-Wavelength Transformer (electrical length \(\lambda/4 \))

\[Z_{\lambda/4} = \sqrt{Z_o Z_L} = 147.99 \Omega \]

(b) Determine the physical length:

\[\lambda = \frac{C_o}{\sqrt{\varepsilon_r f}} = \frac{3 \cdot 10^8}{1.6 \cdot 10^8} = 1.875 \text{ m} \Rightarrow \frac{\lambda}{4} = 0.4688 \text{ m} \]

(c) Determine the bandwidth given \(\Gamma_m = 0.05 \)

\[\frac{\Delta f}{f_o} = 2 - \frac{4}{\pi} \cos^{-1} \left[\frac{\Gamma_m}{\sqrt{1 - \Gamma_m^2}} \frac{2\sqrt{Z_o Z_L}}{|Z_o - Z_L|} \right] = 2 - \frac{4}{\pi} \cos^{-1} \left[\frac{0.05}{\sqrt{1 - 0.05^2}} \frac{2\sqrt{300 \cdot 73}}{|300 - 73|} \right] = 8.32\% \]

(d) Use a 3 Stage Binomial Transformer to Design a more bandwidth efficient match:

The recursive formula for generating the section impedances is:

\[
\ln \left(\frac{Z_{n+1}}{Z_n} \right) = 2^{-N} C_n^N \ln \left(\frac{Z_L}{Z_o} \right)
\]

\[Z_o = 300 \Omega \]
\[Z_1 = 251.42 \Omega \]
\[Z_2 = 148 \Omega \]
\[Z_3 = 87.11 \Omega \]
\[Z_L = 73 \Omega \]

(e) The bandwidth for this system is given by (N=3):

\[\frac{\Delta f}{f_o} = 2 - \frac{4}{\pi} \cos^{-1} \left(\frac{\frac{\Gamma_m}{2}}{\frac{Z_L - Z_o}{2^{N}(Z_L + Z_o)}} \right) = 57.3\% \]