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Abstract—A cavity-backed loop antenna is developed for
producing broadband circularly polarized (CP) radiation. The
antenna configuration consists of a slot loop and a strip loop. The
slot loop radiates a CP wave at a lower frequency while the strip
loop produces CP radiation at a higher frequency. A combination
of the two frequencies leads to a bandwidth enhancement. The
slot/strip loop antenna is fed by a single straight microstrip line.
It is demonstrated that the cavity-backed slot/strip loop antenna
can achieve an axial ratio ( 3 dB) bandwidth of 19% with good
impedance matching. The antenna configuration is described and
the operating principles for broadband circular polarization and
impedance matching are analyzed. The antenna performance is
confirmed by experimental results.

Index Terms—Broadband antenna, cavity-backed antenna, cir-
cularly polarized (CP) antenna, loop antenna, slot antenna.

I. INTRODUCTION

CAVITY-BACKED slot antennas have two major advan-
tages over cavity-backed wire antennas, such as dipole,

helix, and spiral antennas [1]. First, a slot antenna can be flush
mounted on a metal surface; therefore, it is suitable for applica-
tions in mobile communications (such as IEEE 802.20 for mo-
bile broadband wireless access) and radar systems of high-speed
vehicles or aircraft [2]. Second, slot antennas can be easily fed
by a microstrip line that is fabricated on the same substrate with
the slot and is placed between the cavity and the substrate, thus
avoiding the undesirable radiation from the feeding network.
This is particularly important for applications in antenna arrays.
Many types of slot configurations have been developed for pro-
ducing circularly polarized (CP) radiation, such as annual slot
[3], dual-spiral slot [4], rectangular slot [5], and cloverleaf slot
[6]. However, these slot antennas have a narrow axial ratio (AR)
bandwidth (usually for ). Archimedean spi-
rals usually offer a much wider bandwidth in free space. Un-
fortunately, the presence of a ground plane (or a cavity) limits
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the bandwidth enhancement [7]. One way to remedy this lim-
itation is to use absorbers inside the cavity or to terminate the
spiral slot with tapered resistive loading [8], [9]. But it reduces
the power efficiency. Recently, a bandwidth-enhanced (
for ) cavity-backed slot antenna has been presented
in [10], but it requires a complicated feeding network. In this
paper, we develop a broadband cavity-backed loop antenna with
a simple feeding structure. The antenna configuration developed
is considered to be a combination of a slot loop and a strip loop.
The slot loop has a good CP performance at a lower frequency
while the strip loop produces CP radiation at a higher frequency.
A combination of the two frequencies leads to a bandwidth en-
hancement. The slot/strip loop is fed by a single straight mi-
crostrip line and a good impedance matching is achieved.

The antenna configuration is described in Section II. The
operating principle for broadband circular polarization and
impedance matching is analyzed in Section III. Finally experi-
mental results are presented to verify the antenna performance.

II. DESCRIPTION OF THE ANTENNA

The antenna configuration is shown in Fig. 1. The radiating
element consists of a slot loop and a strip loop (so called a
slot/strip loop) with a pair of parasitic slot loops inside the strip
loop. The slot/strip loop with the parasitic loops is etched on
a thin ( ), low-dielectric constant (

) substrate (RT/duroid 5880) which is backed by a rectan-
gular cavity. The cavity-backed slot/strip loop is fed by a mi-
crostrip feeding line that is fabricated on the same substrate
with the slot/strip loop and is placed between the substrate and
the cavity. The feeding line is divided into three sections: an
open stub, a coupling stub, and a 50-ohms microstrip line. A
coaxial line is connected to the 50-ohms microstrip line for
the purpose of measurement. The broadband circular polariza-
tion is achieved by adjusting the aspect ratio ( ) of the
slot/strip loop and the depth ( ) of the cavity. By changing
the length ( ) of the open stub and the width ( ) of the
coupling stub, a good impedance matching can be obtained.
The cavity-backed slot/strip loop antenna was designed for a
C-band operation using Micro-Stripes 7.0—a transmission-line
matrix (TLM) based full-wave electromagnetic simulator [11].
The physical dimensions of the antenna are attached in the cap-
tion of Fig. 1.
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Fig. 1. Configuration of the cavity-backed broadband CP slot/strip loop an-
tenna. (W = 36 mm, L = 62 mm, W = 26 mm, L = 52 mm,
W = 16 mm, L = 20 mm, w = 2 mm, w = 1 mm, w = 0:78 mm,
D = 12 mm, t = 0:254 mm; the width (w ) of the coupling stub is
w = w = 2 mm, the length of the coupling stub is 3w = 3 mm, the
length of the open stub is l = 6:5 mm.).

III. OPERATING PRINCIPLES

A. Broadband Circular Polarization

As mentioned in previous sections, the slot/strip loop can be
considered as a combination of a slot loop and a strip loop (see
Fig. 2). For the slot loop [see Fig. 2(a)], a pair of shorting strips
must be introduced in order to produce a CP wave [3], [5]. The
winding sense of the slot loop decides the sense of its CP ra-
diation, which is left-handed in spatial phase starting from the
feeding point (the CP wave is propagating in the direction).
When a voltage source is enforced at the feeding point, a trav-
eling-wave magnetic current can be excited on the slot loop
[5]. If the slot loop has a perimeter of approximately one wave-
length, the traveling-wave current can create electromagnetic
waves in the far-field zone with of spatial phase as
well as time phase, thus achieving CP waves. Due to the nonuni-
form traveling-wave current distribution along the slot loop, the

Fig. 2. Slot/strip loop considered as the combination of a slot loop and a strip
loop.

Fig. 3. Axial ratio for a slot loop, a strip loop, and a slot/strip loop.

CP waves created may be not perfect. And the slot loop usu-
ally has a narrow bandwidth for CP radiation since the electrical
length of the slot loop is frequency dependent. Fig. 3 shows the
AR in the direction simulated for the slot loop. It is seen that
the slot loop has a minimum AR of at a lower fre-
quency of . and a narrow bandwidth of for

. In order to improve the AR bandwidth, we introduce
a strip loop inside the slot loop [see Fig. 2(b)]. There is a pair of
gaps into the strip loop [see Fig. 2(b)] for the generation of CP
radiation [12], [13]. The strip loop moves the minimum AR to
a higher frequency of while maintaining a narrow
bandwidth (see Fig. 3). The introduction of the strip loop im-
proves the AR at the higher frequency, but worsens the AR at
the lower frequency. For the AR bandwidth enhancement, we
need to combine the slot loop and the strip loop into the same
antenna aperture. To do so, we introduced a pair of small slots
(also with a shorting strip on them) inside the strip loop [see
Fig. 2(c)]. The introduced slots can be considered as a parasitic
element of the slot loop, thus improving the bandwidth of the
slot loop [14], [15]. Fig. 3 shows that the AR bandwidth of the
slot/strip loop is increased to for . It should
be noted that there would be no bandwidth enhancement without
the strip loop (i.e., if the gaps on the strip loop were removed).
Therefore, the slot/strip loop cannot be simply thought of as the
complementary structure of a wire loop with parasitic elements
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Fig. 4. Axial ratio at different aspect ratios (W =L ) of the slot/strip loop.
(W = 28 mm and L = 48 mm for W =L = 1, W = 26 mm and
L = 52 mm for W =L = 4=5, W = 24 mm and L = 56 mm for
W =L = 7=11.).

Fig. 5. Axial ratio at different depths (D ) of the cavity.

[15]. The AR bandwidth improvement can be considered as a
result of the combination of a strip loop and a slot loop with a
pair of parasitic slot loops.

The cavity-backed slot/strip loop antenna was optimized by
changing the aspect ratio of the loop and the depth of the cavity.
Fig. 4 shows the variation of AR as the aspect ratio ( ) is
reduced from 1 (i.e., a square) to 7/11. In the optimization, only
the width and length of the cavity were adjusted with the as-
pect ratio to keep the distance (i.e., 5 mm) from the sidewall of
the cavity to the edge of the loop unchanged. It is found that
the optimized aspect ratio is about 4/5. A larger aspect ratio
(e.g., 1) or a smaller aspect ratio (e.g., 7/11) would lead to a
narrower AR bandwidth. The variation of AR with the depth
( ) of the cavity is displayed in Fig. 5. At a higher depth (e.g.,

), there is a good AR at a lower frequency but a
bad AR at a higher frequency. As the depth decreases, the AR
is improved at the higher frequency. But if the depth is further
reduced (e.g., ), the AR at the lower frequency be-
comes worse. Therefore there should be an optimal value for the
depth, which is found to for the proposed slot/strip
loop antenna. The effect of the width ( ) of the ground plane
on the AR performance is exhibited in Fig. 6. There is some ef-
fect due to the diffraction from the edge of the ground plane.

Fig. 6. The effect of the width (W ) of ground plane on the axial ratio of the
slot/strip loop antenna.

Fig. 7. Equivalent circuit for input impedance of the cavity-backed slot/strip
loop antenna (Z = 50 ohms, l =W =2 = 13mm, l = l +1:5mm =

8 mm).

But it is not significant. For a certain ground plane, the slot/strip
loop may be adjusted slightly for an optimal performance.

B. Impedance Matching

To understand the impedance matching of the slot/strip loop
antenna, an equivalent circuit for the input impedance is pre-
sented in Fig. 7, where the slot discontinuity at the feeding point
appears as a simple series impedance to the microstrip line
[16]. The impedance is the input impedance of the slot/strip
loop when it is directly fed by a voltage source [see Fig. 2(c)].
The impedance directly simulated by enforcing a voltage gap
feed is shown in Fig. 8. A loop around the center frequency (6.5
GHz) is observed at the impedance locus, which means that the
broadband property of the input impedance of the slot/strip loop
is inherent, but not due to the feeding structure. The impedance

is coupled to the microstrip line through the self-inductances
( and ) of the slot/strip loop and the coupling stub, and the
mutual inductance ( ) between the two elements [17], leading
to the series impedance . Since it is difficult to determine the
values of , , and , we cannot directly calculate the series
impedance . Instead, we can obtain by considering the mi-
crostrip line-fed slot/strip loop as a two-port device with Port 1
defined at the 50-ohms microstrip line and Port 2 at the open
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Fig. 8. Input impedance Z of the cavity-backed slot/strip loop antenna fed by
a voltage source and the series impedanceZ calculated using the S parameters.

stub. From the parameters of the two-port network, we have
[18]

(1)

where ( ) is the characteristic impedance of the
microstrip line. Note that the reference plane of the parameters
is defined at the center of the antenna (i.e., the feeding point
shown in Fig. 2). The parameters of the two-port network can
be obtained by numerical simulation. The series impedance
calculated using (1) is also plotted in Fig. 8. We can see that the
impedance loop is moved to the inside of the circle
( ).

To demonstrate the accuracy of the impedance obtained,
we compare the input impedances ( ) obtained through three
different ways.

i) By a series impedance model [16]

(2)

where is the propagation constant of the microstrip line
and is the length ( ) of the open stub plus the half
length (1.5 mm) of the coupling stub, i.e.,

.
ii) By a two-port network [18]

(3)

where

(4)

with

(5)

iii) By a direct numerical simulation: .
Fig. 9 displays the comparison of , , and

, showing no significant difference. This implies
that the coupling between the microstrip feeding line and the

Fig. 9. Input impedance Z of the cavity-backed slot/strip loop antenna when
fed by a microstrip line (Z : calculated using a series impedance model;
Z : calculated using a two-port network; Z : obtained by direct
simulation).

Fig. 10. Effect of the width (w ) of the coupling stub on the input impedance
Z of the cavity-backed slot/strip loop antenna.

slot/strip loop can be modeled by a simple series impedance.
Comparing the in Fig. 9 to in Fig. 8, we can also see
that and have no obvious difference, which means
that the open stub of the feeding line actually acts as a short
circuit. Therefore only the length ( , is ap-
proximately a quarter guided wavelength) of the open stub
is critical for the impedance matching, which was optimized
to be . A good impedance matching can be
obtained by adjusting the coupling between feeding line and
the slot/strip loop, i.e., the width ( ) of the coupling stub.
Fig. 10 demonstrates the effect of the width on the input
impedance of the microstrip-fed slot/strip loop antenna. The
optimized value for was found to be .
The dimensions of the cavity and the ground plane have no
significant effect on the impedance matching.
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Fig. 11. Prototype of the cavity-backed slot/strip loop antenna.

Fig. 12. Return loss of the cavity-backed slot/strip loop antenna.

Fig. 13. Axial ratio and gain of the cavity-backed slot/strip loop antenna.

IV. EXPERIMENTAL RESULTS

A prototype of the cavity-backed slot/strip loop antenna is
pictured in Fig. 11. A flexible coaxial cable is connected to
the microstrip feeding line for measurement. Fig. 12 compares
the measured return loss (RL) to the simulated result. A slight
difference is probably due to the transition between the mi-
crostrip line and the coaxial cable. The measured bandwidth for

is about 20%. Fig. 13 shows the comparison of
the simulated AR with the measured result. The measured band-
width for is approximately 22%, but there is a slight

Fig. 14. Radiation patterns of the cavity-backed slot-strip loop antenna.

bandwidth shift between the AR and RL. The overlapped band-
width for and is about 19%. The gain of
the cavity-backed slot/strip loop antenna is found to be around
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9 dBi. The radiation patterns measured at 5.7 GHz and 6.7 GH
are compared with the simulated results in Fig. 14 and good
agreement is observed for the co-polarization (i.e., the left-hand
circular polarization, LHCP) over the main beam. As expected,
the beamwidth in the is wider than that in the

because the length (i.e., ) of the antenna
aperture in the direction is shorter than that (i.e., ) in the

direction. The cross-polarization [i.e., the right-hand circular
polarization (RHCP)] is less than . The discrepancies
between the simulated and measured results for the axial ratio,
gain, and radiation patterns are mainly due to the measurement
errors. We used the NSI near-field antenna measurement system.
Even though the antenna under test was setup at the far-field
zone, the mechanical supporting structures of the system would
still cause diffraction, introducing the measurement errors, par-
ticularly on the cross-polarized component. But the measure-
ment has indeed demonstrated the broadband CP performance
for the proposed antenna.

V. CONCLUSION

A cavity-backed slot/strip loop antenna has been developed
for broadband CP operation. The slot/strip loop is a combination
of a slot loop and a strip loop. The slot loop radiates a CP wave at
a lower frequency while the strip loop produces CP radiation at
a higher frequency. A combination of the two frequencies leads
to a significant bandwidth enhancement. A simple microstrip
line is introduced to feed the slot/strip loop antenna. It has been
demonstrated that the proposed cavity-backed loop antenna can
achieve a bandwidth of 19% for with .
The operating principles of the slot/strip loop antenna are inves-
tigated. Simulation and experimental results show good agree-
ment.
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