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Abstract: A method that allows the intracell modeling of a PEC/dielectric interface using MRTD is 
presented in this paper.   This approach involves zeroing scaling and wavelet functions that intersect 
the metal, and results in the decoupling of the fields on either side of the metal. Applications of this 
technique to EBG patterned ground planes and RF-MEMS are discussed. 
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1. Introduction 
 
 
Modern microwave structures are often tedious to simulate because they consist of large, 

distributed, high-frequency elements that need to be simulated using a full-wave method.  This is 
difficult using most conventional techniques because the high aspect ratio of the components requires 
the use of small elements and leads to the use of extremely large grids.  In order to simulate modern 
circuits, which may consist of MEMS and EBG structures, a method that allows the use of an adaptive 
grid is preferable.  In this paper a method is presented that enables  the multiresolution time-domain 
(MRTD) [1] technique to accurately represent  metals intersecting the grid.   Using this method, high 
resolution MRTD cells can accurately model areas with complex metal arrangement, while low 
resolution MRTD cells can be used elsewhere.  This can be accomplished using the MRTD technique 
by zeroing out wavelet and scaling coefficients that intersect the metal.  The higher resolution 
elements which exist on either side of the metal are then decoupled, modeling the boundary condition 
of a PEC that exists within the cell.  The resolution required in these cells can then be determined 
through the use of thresholding, where the relative and absolute magnitude of the wavelet coefficients 
can be used to determine which resolution is required to accurately simulate the structure.  One 
example of these type of structures is a patterned ground plane for a multilayer topology, that acts as a 
shield between layers for selected frequencies while being mechanically compatible with the 
manufacturing process.  A second example involves the hybrid electromagnetic and mechanical 
simulation of a MEMS switch with a moving membrane employing time varying intracell modeling. 



2. Background 
 
The multiresolution time-domain technique (MRTD) is so named because it employs 

multiresolution principles to discretize Maxwell’s equations in a wavelet expansion.  Wavelet 
expansions provide a set of functions with adaptive resolution.  Higher resolution functions can be 
added and subtracted during simulation.  Due to this, the MRTD technique has a built in time- and 
space- adaptive gridding capability.  When applied to Maxwell’s curl equations, the orthogonality of 
the wavelets provides an efficient discretization which leads to an explicit time marching scheme 
much like the finite-difference time-domain technique (FDTD) [2].  The expansions of E and H are 
presented in (1) and (2) for a 1D scheme consisting of Ez and Hy fields propagating in the x direction.  
In these equations the location of the coefficients in time and space for the electric field are denoted by 
n and m, respectively.  The time and space locations of H are denoted by n’ and m’.  The relationship 
between the primed and unprimed parameters of these coefficients depends on the choice of basis 
functions used.  The update equations for the MRTD scheme can be determined by inserting (1) and 
(2) into (3) and (4) and applying the method of moments. 
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Fig. 1  Haar scaling function Fig.2  Haar wavelets, r=0,1,2 

 
There are many families of wavelets that can be used in the above equations.  The time 

discretization is usually performed using pulse functions, like that presented in Fig. 1, called Haar 
scaling functions.  This makes the time discretization relatively simple and avoids non-causality which 
can arrive through the use of entire domain functions.  Wavelets are usually chosen for their ability to 
produce very sparse matrices when used to discretize equations.  For this investigation, the Haar 
scaling and wavelet functions, presented in Figs. 1 and 2 will be used [3].  While not as efficient as 

r = 0 
r = 1 
r = 2 



other wavelet expansions, the Haar wavelets have the advantages of being both easy to work with and 
having a finite domain.  This  nature of the Haar wavelets makes it possible to easily deal with hard 
boundaries such as PEC (and PMC) boundary conditions. 

Another advantage of using Haar wavelets is that the derivative of the Haar wavelets and scaling 
function is a series of delta functions.  These delta functions make the calculation of the inner products 
when applying the method of moments straightforward, and no quadrature is required during 
simulation.  When (1) and (2) are inserted into (3) and (4) and the method of moments (Galerkin)  is 
applied, independent update equations are obtained for each scaling and wavelet function.  Each E (H) 
coefficient is only dependent on its previous value, and the values of the surrounding E (H) 
coefficients.  For example, the update equation for the H scaling function is 
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It has been shown [4] that the offset between the E and H cells should be 1/2rmax+2 where rmax 
represents the highest resolution used in the simulation.  Using the notation from (1) and (2) 
m’=m+1/2rmax+2. 

One of the important features of the MRTD method is that the cells used in the discretization are 
larger than those used in a similar FDTD grid.  In many FDTD simulations, however, the grid size is 
determined not by the stability requirements, but rather by the feature size of the structure being 
modeled.  For example, and EBG structure may consist of a periodic arrangement of multiple 
dielectrics.  If each cell contains only one dielectric, then MRTD will offer little to no advantage over 
FDTD.  Therefore, it is necessary to use a scheme that allows the dielectric constant to vary over the 
length of a cell [5].  In the derivation of the method, the D field is not replaced by the product of a 
fixed ε and E, instead D is solved for directly.  A multiplication of the D coefficients with a 
transformation matrix based on the ε spatial distribution is then used to determine the E fields.  The 
coefficients of this matrix are calculated before simulation, and the method therefore has minimal 
impact on the speed of the scheme. 

 
 

3. Subcell Modeling Techniques 
 

In addition to the time and space adaptive grid, MRTD allows the use of cells closer in size to the 
Nyquist limit [1].  While all of these cells will contain wavelet functions, cells far from discontinuities 
with low field variation will not contain many wavelets with significant values.  An adaptive scheme 
that compares the values of these wavelets to their respective scaling function can be used to determine 
wavelets that can be safely neglected in the update equations [6].  In order to use these large cells, 
however, a method that enables metals to intersect a cell must be used.  Using such methods, an 
MRTD grid can be applied to an arbitrary geometry. 

Subcell modeling methods have been applied in the past to FDTD [7],[8].  One application is for a 
MEMS structure, where the membrane height may be on the order of a few microns.  If this structure 
is inserted into a larger circuit, on the order of a few thousand microns, the grid that conforms to this 
small feature can easily have millions of cells and take days to execute.  The subcell modeling 
techniques allow the grid resolution to be increased around the MEMS circuit, while the lower 
resolution is used elsewhere. 

While these techniques allow some degree of adaptability to the grid, they have several limitations.  
First, they allow the resolution to be varied in space, but not time.  Second, they introduce special 
update equations in the area of the discontinuity.  These modified update equations utilize 



interpolation to add grid points in areas where they do not naturally exist.  These interpolations can 
add to grid dispersion.  In contrast, variable resolution is a built-in feature of MRTD.  In the next 
section, a method to insert metals inside these cells will be  presented. 

 
 

4. MRTD Intracell Metal Modeling 
 
When inserting a PEC into an FDTD or MRTD grid, the boundary condition that must be enforced 

is that electric fields tangential to the metal must be set to zero.  This is a natural condition in FDTD, 
as metals can be placed along cells that coincide with the electric field locations in the Yee cell.  This 
condition can be exactly duplicated in Haar MRTD by placing metals along the electric field locations 
in the modified Yee cell that represents the MRTD grid.  If a metal only covers a portion of the cell, 
only the scaling and wavelet functions that intersect the metal need to be zeroed.  By increasing the 
resolution, a metal intersecting any part of the grid can be represented.  An example of this is 
presented in Fig. 3.  In this case the metal splits a cell in two.  The scaling function is intersected by 
the metal.  It must be set to zero.  The 0th resolution wavelet, however, is also split by the metal.  
Instead of zeroing it, it can be duplicated, one wavelet for each side of the metal employing image 
theory.  For update equations for this wavelet, contributions from the other side of the metal are 
assumed to be zeroed.  In this way the wavelet acts as a scaling function for half of the cell.  

 
 Fig. 3 Metal intersecting the center 
  of a Haar MRTD cell 
 
 This method can be especially useful for the modeling of RF-MEMS devices, structures 
consisting of moving membranes which change their position with time.  The time-adaptive MRTD 
grid is computationally efficient  in this case as the wavelet functions that are set to zero can be made 
to coincide with the location of the metal at any given time step. 
 

r = 0 
r = 1 
r = 2 



 
5. Conclusion 

 
In this paper a method was presented that enables the modeling of a metal that cuts through an 

MRTD cell.  This technique is very important for the modeling of finely detailed structures using the 
MRTD method since it allows for the use of a fixed physical cell size (scaling function) and the 
adaptive implementation of a denser effective cell through the use of different resolutions of wavelet 
functions.  This gridding allows the modeling of RF-MEMS devices, because the variable resolution 
accurately represents the motion of the membrane in the time domain.  It also allows for the simulation 
of patterned ground planes that consist of intracell metal and dielectric interfaces. 
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