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Abstract — This work describes the implementation of a
machine learning (ML) strategy based on the neural network
for real-time range-adaptive automatic impedance matching of
Wireless Power Transfer (WPT) applications. This approach for
the effective prediction of the optimal parameters of the tunable
matching network and classification range-adaptive transmitter
coils (Tx) is introduced in this paper aiming to achieve an
effective automatic impedance matching over a wide range
of relative distances. We propose a WPT system consisting
of a tunable matching circuit and 3 Tx coils which have
different radius controlled by trained neural network models.
The feedforward neural network algorithm was trained using
220 data and classifier’s in pattern recognition accuracy were
characterized. The proposed approach achieves a Power transfer
efficiency (PTE) around 90% for ranges within 10 to 25cm, is
reported.

Keywords — Impedance matching, machine learning, neural
network, pattern recognition, resonant coupling, wireless power
transfer.

I. INTRODUCTION

The impedance matching of a wireless power transfer
(WPT) system using magnetic resonance coupling (MRC)
has become a critical challenge in order to maintain a
reasonable Power transfer efficiency (PTE) for time-varying
configurations. Several approaches of impedance matching
have been proposed [1], [2] and [3] regarding the distance
between the receiver (Rx) and transmitter (Tx) as PTE varies
significantly with distance. However, these are limited in the
effective ranges as a consequence of their unexpected variation
of the transfer distance or load impedance. Here, we propose
an alternative approach that takes advantage of a novel method
based on a feedforward neural network combined with pattern
recognition techniques, thus addressing the shortcomings of
the aforementioned impedance matching approaches while
retaining high PTE. As a proof-of-concept, one receiver coil,
three selective transmitter coils and a matching circuit with
tunable capacitors are first designed and measured. Then, a
machine learning approach utilizing neural network algorithms
that can construct the mapping relationship is presented to
improve the capability of the WPT system.

II. WPT APPLICATION

A. Matching Circuit Design

A matching circuit topology consisting 3 consecutive
L-type series inductor and shunt capacitor with p-i-n diode
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Fig. 1. (a) Simplified schematic of the matching circuit. (b) Prototype of the
matching circuit.
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(c)
Fig. 2. Simulated and Measured capacitance variability of (a) Cvar.1 (b)
Cvar.2 (c) Cvar.3.

switch was used in [3]. The simplified schematic of this
matching circuit is shown in Fig.1-(a), and a fabricated
prototype is shown in Fig. 1-(b). To overcome the limited
capability of this static topology to provide an acceptable
PTE over a wide range of transmitter-receiver distances, one
variable capacitor from Murata electronics is employed in
this paper enabling superior characteristic of matching circuit
compared with previous work and allows for the on-demand
value tuning utilizing the results from the proposed machine
learning approach. These tunable capacitors typically achieve
capacitanve values that can vary by applying voltage to their
elctrodes in the rance of 30pF-60pF (0-3V) and 100pF-200pF
(0-5V). As experimental verification of the variability of the
capacitance values is shown in Fig. 2. With this proposed
method, a wide range of impedance coverage can be realized
though the variation of the input impedance Zin. For the
inductance values of L1, L2, and L3, 1432nH, 610nH
and 1484nH were optimized corresponding to the values of
capacitance’s tunable ranges.
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Rx Tx1 Tx2 Tx3
Self-resonance Frequency (MHz) 13.56

Copper Wire Radius (mm) 0.5
Radius (cm) 5 10 15 20

Number of turns 27 10 6 4.5
Pitch (mm) 2 5

B. Selective Transmitter coils

A multi transmitter coils topology is employed to reduce
the variation in the input impedance of the WPT system with
respect to the distance. In order to maximize the coil-to-coil
efficiency, it was found that the optimal radius of Tx is
approximately equal to the distance of coil-to-coil in [4]
reporting the analytically derived equation rTx = d, when
rRx << rTx. Based on their analysis, the overall geometrical
design for Rx and Tx coils is controlled by the key parameters
summarized in TableI. In order to confirm the effectiveness of
this approach, several open type helical coils with different
radius were designed on CST studio 2016 using the integral
solver. The extracted S-parameters from the simulations will
serve a standard dataset for the neural network training
presented in next section. A phorograph of the fabricated Rx
and 3 Tx coils are shown in Fig. 3.

III. MACHINE LEARNING APPROACH

Neural networks represent powerful machine
learning-based techniqeus used to solve many problems
apart from other machine learning algorithms that make
use of architecture inspired by the neurons in the human
brain. There networks turn out to be well-suited to modeling
high-level abstractions across a wide array of disciplines and
industries.

A. Feedforward neural network with backpropagation

The feedforward neural network, also called deep
feedforward network is one of the deep learning models.
To approximate some function f(x) through the feedforward
neural network, when x is input, the feedforward neural
network defines a mapping function y = f(x; θ) and
determines the parameters θ which gives the best function
approximation results [5]. Also, the backpropagation method
provides a neural network with a set of input values for which
the correct output value is known beforehand and then it is
added in a feedforward neural network. In this network as
shown in Fig. 4, the informtion moves in both directions
from the input layer where each input has an associated
weight factor(w), though the hidden layers are usually used
for improving mapping ability to the output layers. In this
work, we propose a WPT scheme with three cascading
L-type impedance matching network based on a feedforward
neural network which is similar approach used in [6]. They
developed a mapping relationship between the impedance of
the equivalent load (Zeq = Req +jXeq) and then the matched
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Fig. 3. (a) Fabricated Rx coil. (b) Fabricated 3 Tx coils. (c) Distance between
Rx and Tx1.
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Fig. 4. The schematic of the feedforward neural network with
backpropagation.

capacitors connected with each switch, capacitor set composed
of (C1, C2, C3) in consideration of each switching status as
well. The dataset for training to produce a function of the
network consists of the distribution of |S11| matched by the
neural network within a range of 0 to 20Ω for Req and -50
to 50 for Xeq with 1 interval in total 220 data.

B. Neural Network Pattern Recognision

Additionally, we proposed the advanced approach using
a shallow neural network to classify patterns. Normally,
only feedforward networks are used for pattern recognition.
Through classification, an automated system declares that
the inputted object belongs to a particular category. 220 set
of output parameters, which represents capacitance value,
(C1, C2, C3) from above trained model acts as an input
to select proper transmitter coils among Tx1, Tx2, Tx3, then
trained classifier can recognize the three categories associated
with each input parameters with 90.18% accuracy.

Table 1.  Parameters of the Rx and Tx Coils for the Proposed WPT System 
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Fig. 5. Comparison of reflection coefficienct (S11) before matching and after
matching at distance 10-25cm.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

To predict the capacitance values and classify the type
of transmitter, a training process using the feedforward neural
network and pattern recognition was implemented. The trained
feedforward neural network model and classifier are built by
the process of previous section. Firstly, the initial impedance
assumed according to the coil-to-coil distance such as of
Rx-Tx1 at 10-14cm, Rx-Tx2 at 15-19cm and Rx-Tx3 at
20-25cm. Before matching, the initial input impedance of
Rx-Tx at 13.56MHz were measured by a vector network
analyzer and plotted in Fig. 5. After matching through
the trained neural network model and classifier, the input
impedance matching is improved over the entire separation
distance range and were also plotted in Fig. 5. Especially
at distances 13, 14, 15 and 20cm, the capacitance values
extracted from the trained neural network model were
classified to the transmitter coil with different radius which
results in significant improvement by switching, shown in
Fig. 6. To verify and validate the proposed approach, Fig. 7
shows calculated PTE at each distance in the range of 10 to
25cm compared with using only one specific Tx coil and with
selective Tx coils under the condition of the similar matching
approach in [4]. By utilizing the selective Tx coils, the PTE
was more stable and able to avoid the sudden drop at a certain
range as shown in Fig. 7. Moreover, the proposed approach
achieves a PTE around 90% for ranges within 10 to 25cm.

V. CONCLUSION

In this paper, range-adaptive impedance matching of WPT
system utilizing neural network algorithms was demonstrated.
The implementation of the feedforward neural network and
pattern recognition techniques for real-time range-adaptive
automatic impedance matching of WPT applications can, not
only, predict the capacitance value of the matching circuit
under a specific environment, but can also select one of
Tx coils which maximize Rx-Tx power transfer efficiency
up to 95%. In addition, the proposed model is scalable and
generalizable to contexts such as misalignment of Rx-Tx coils
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Fig. 6. Transmitter selectivity.
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Fig. 7. The PTE without the selective Tx versus with the selective Tx.

and a wide range of operation distances. The work reported
here could greatly enhance the state-of-the-art real-time
range-adaptive automatic impedance matching techniques.
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