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Time Adaptive Time-Domain Techniques
for the Design of Microwave Circuits

Manos M. Tentzeris, James Harvey, and Linda P. B. Katehi

Abstract—A novel time adaptive time-domain technique based
on the Haar expansion basis is proposed and validated for a
specific circuit problem. The modeling of active and passive
lumped and distributed elements, as well as of excitation and
boundary conditions, is performed effectively. This scheme, based
on a combination of absolute and relative thresholding, provides
a real-time time adaptive grid with improved time resolution in
comparison to conventional time-domain schemes (FDTD) while
maintaining a similar accuracy.

Index Terms— Adaptive gridding, memory compression,
microwave circuits, multiresolution, thresholding, time-domain
techniques, wavelets.

I. DISCUSSION ON THEHAAR EXPANSION BASIS

SIGNIFICANT attention is being devoted now-a-days to
the analysis and design of various types of microwave

circuits. The finite-difference-time-domain (FDTD) scheme
is one of the most powerful numerical techniques used for
numerical simulations. However, despite its simplicity and
modeling versatility, the FDTD scheme suffers from serious
limitations due to the substantial computer resources required
to model electromagnetic problems with medium or large com-
putational volumes. The multiresolution time-domain method
(MRTD) [1]–[4] has shown unparalleled properties in com-
parison to Yee’s FDTD. In an MRTD scheme the fields are
represented by a twofold expansion in scaling and wavelet
functions with respect to time–space. Scaling functions guar-
antee a correct modeling of smoothly varying fields. In regions
characterized by strong field variations or field singularities,
higher resolution is enhanced by incorporating wavelets in
the field expansions. The major advantage of the use of
Multiresolution analysis to time domain is the capability to
develop time and space adaptive grids.

MRTD schemes based on cubic spline Battle–Lemarie scal-
ing and wavelet functions have been successfully applied to the
simulation of two-dimensional (2-D) and three-dimensional
(3-D) open and shielded problems [1]–[3]. The functions of
this family do not have compact support, thus the MRTD
schemes have to be truncated with respect to space. Nev-
ertheless, dispersion analysis of this MRTD scheme shows
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Fig. 1. Zero-order intervalic function basis.

the capability of excellent accuracy with up to almost 2
points/wavelength (Nyquist Limit). However, specific circuit
problems may require the use of functions with compact
support. Especially in the approximation of time derivatives,
the use of entire domain expansion basis would require very
high memory resources for the storage of the field values
everywhere on the grid for the whole or a large fraction
of the simulation time. This problem does not exist in the
approximation of the spatial derivatives since the field values
on the neighboring spatial grid points have to calculated and
stored no matter what expansion basis are used. For that
reason, Haar basis functions have been utilized in space-
domain [6]. As an extension to this approach, intervalic
wavelets (Fig. 1) may be incorporated into the solution of
SPICE-type circuits in time domain. Results from that new
technique will be presented in this letter.

II. A PPLICATIONS IN SPICE PROBLEMS

For simplicity, the one-dimensional (1-D) MRTD scheme
will be derived. It can be extended to 2-D and 3-D in a straight-
forward way. In addition, only the 0-resolution of wavelets is
enhanced. The voltage and the current are displaced by half
step in both time- and space-domains (Yee cell formulation)
and are expanded in a summation of scaling functions in space
and scaling () and wavelet ( ) components in time. For
example, the voltage is given by

(1)

where and rep-
resent the 0-order intervalic scaling and 0-resolution wavelet
functions. The conventional notation is used for the
voltage component at time and , where
and are the time-step and the spatial cell size, respectively.
The notation for the current is similar.
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Due to the finite-domain nature of the expansion basis, the
hard boundary conditions (open/short circuit) can be easily
modeled. If a short circuit exists at the , then
both scaling and wavelet voltage coefficients for the cell
must be set to zero for each time-step(

). Similarly, an open circuit at
can be modeled by zeroing out the current coefficients

( ).
The alternating nature of the 0-resolution wavelet function

guarantees the double time-domain resolution of the MRTD
scheme. Updating the voltage scaling and wavelet coefficients
at for a specific time-step , two values can be
defined for the time span of this
time-step

.
(2)

Without loss of generality, the derivation of the MRTD
equations for a lossless transmission line will be presented.
The time-domain voltage variation in this type of transmission
lines is described by

(3)

Following a procedure similar to the [2], the following MRTD
equations are derived

(4)

(5)

with
, .

The equations for the time-domain variation of the current
scaling and wavelet coefficients are derived in a similar
way after making use of the duality principle ( ,

). The are the distributed inductance
and capacitance of the line and are the conductor
and dielectric loss, respectively.

For nonzero loss coefficients, the equations giving the
scaling and wavelet coefficients for voltage and current are
coupled. For lossless lines, (4) updating the scaling coefficients
only get uncoupled of (5) updating the wavelet coefficients. To
create an efficient time adaptive algorithm, all four equations
must be coupled on any case. An efficient way is to apply the
excitation in a physically correct manner. If the excitation has
the time-dependence at the location , then the
scaling and wavelet coefficients for this cell have to be

(6)

Nevertheless, (6) has to be applied in order to satisfy the
physical boundary condition at the excitation cell(s). It has
to be noted, that (4) and (5) can be used only for lossy
lines with low to medium loss coefficients. The threshold

for gave satisfactory results for
all simulations. For higher loss coefficients, the loss can be
modeled in an exponential way similar to [3]. For example,
for large values of ( ), (4) and (5) have
to be replaced by the following uncoupled expressions with

:

Using this procedure, a termination layer similar to the FDTD
widely used perfectly matched layer (PML) [5] can be easily
modeled. The should have a spatial parabolic
distribution with very high maximum value and they should
satisfy the condition for each cell of
the layer. In this way, one matched transmission line can be
simulated by choosing the appropriate that satisfy
the specified numerical reflection (usually 80 dB).

Lumped passive elements such as capacitors, inductors, and
resistors can be modeled in a similar way with the Distributed
ones by numerically distributing them along one cell. For
example, if one lumped capacitor is located at
along a lossy line with , the voltage
coefficients will still be given by (4) and (5).
The only difference is that the constant will have the new
value .

III. V ALIDATION —THRESHOLDING ALGORITHM

To validate the above approach, the MRTD
algorithm was applied to the simulation of a lossy
transmission line with

nH/m nF/m m m for a Gabor
excitation [50, 100 MHz], 5000 time-steps with size

and 4000 cells with cm. Fig. 2(a),
which displays the voltage scaling and wavelet coefficients
evolution at for the first 1400 time-steps of the
simulation, shows that the wavelet coefficients have significant
values only at areas with significant scaling function values
and approximately equal to the values of the first derivative
of the voltage spatial distribution and are close to the 11% of
the respective scaling functions. Fig. 2(b) and (c) compares
the total voltage value at the same probe position calculated
by FDTD (Scal.) and MRTD (Scal.Wav0) for the time-steps
1000–1400 and 1103–1107, respectively, and demonstrate
the ability of this MRTD scheme to double the conventional
FDTD resolution in the time domain by providing two values
for each time-step.

The fact that the wavelet coefficients take significant values
only for a small number of time-steps allows for the develop-
ment of a time adaptive gridding algorithm. One thresholding
technique based on absolute and relative thresholds offers
very significant economy in memory while maintaining the
double resolution in time where needed. For each time-step
the maximum value of the voltage scaling coefficient over
the whole grid is identified. All wavelet components with
values below a specific fraction (relative threshold) of the
above number are eliminated. To take into consideration the
time-steps that the voltage scaling components have a very
small value (close to numerical accuracy of the algorithm),
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(a)
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Fig. 2. Demonstration of the double resolution in time domain.

an absolute threshold is introduced. Similar approach is used
for the current wavelet coefficients. It has to be noted that
the absolute threshold for the current components is a scaled
version of the absolute threshold for the voltage components
in order to account for their time-lag by half time-step as
well as for their relationship through the wave impedance
of the respective medium(s). Different values of the relative
and absolute thresholds are investigated in Fig. 3 in terms of
memory compression (M.C) and relative error (R.E.)

M.C. (%)
Number of Wavelets above thresholds

Total number of Wavelets (Grid Size)
%

(7)

R.E. (%)
Voltage Voltage

Voltage
% (8)

where Voltage and Voltage are the total voltage
values at the probe position at with and
without the use of the thresholding algorithm and

is the Norm-2 defined over the total number
of the simulation time-steps.

Fig. 3 displays the performance for absolute thresholds
( ) between 10 and 5 10 and relative thresholds
( ) of 10 , 5 10 , and 5 10 . For values of
above 10 , the M.C. falls below 5% (almost no wavelets are
used) and the additional accuracy offered by the wavelets is
lost (R.E. 10 %), independently of the value of . On the
contrary, for lower values of , the effect of is critical.
For below 5 10 , small values of (in the order of
10 ) create very moderate M.C. (larger than 15%) and too

(a)

(b)

Fig. 3. Parametric investigation of absolute and relative threshold values.

good accuracy (better than 0.05%), though large values of
(in the order of 5 10 ) cause the opposite effect (M.C. close
to 7.5% and R.E, close to 10%). The best compromise between
compression and accuracy can be achieved forbetween
10 and 5 10 and between 10 and 10 (M.C.

10% and R.E. % % ), assuming that the amplitude of
the excitation is 1. For this optimum thresholding choice, the
proposed time adaptive technique offers a double resolution in
time domain in comparison to the conventional FDTD scheme,
while increasing the meory requirements only by10%. This
property is very important, especially for simulations of active
devices, which would require a large number of time-steps
with values significantly lower than the Courant limit in order
to achieve the necessary time resolution if the conventional
FDTD scheme was used.

IV. CONCLUSION

A novel time adaptive time-domain technique based on
the Haar (intervalic) expansion basis is proposed and val-
idated for a specific circuit problem. Active and passive
lumped and distributed elements, as well as excitation and
boundary conditions are modeled effectively. This real-time
time-adaptive scheme, based on a combination of absolute and
relative thresholding, exhibits significant improvement in time-
domain resolution while maintaining a similar accuracy with
the conventional FDTD technique.
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