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Abstract— This paper discusses the design of a novel dual
(solar + electromagnetic) energy harvesting powered commu-
nication system, which operates at 2.4 GHz ISM band, enabling
the autonomous operation of a low power consumption power
management circuit for a wireless sensor, while featuring a very
good “cold start” capability. The proposed harvester consists
of a dual port rectangular slot antenna, a 3-D printed pack-
age, a solar cell, an RF-dc converter, a power management
unit (PMU), a microcontroller unit, and an RF transceiver. Each
designed component was characterized through simulation and
measurements. As a result, the antenna exhibited a performance
satisfying the design goals in the frequency range of 2.4–2.5 GHz.
Similarly, the designed miniaturized RF-dc conversion cir-
cuit generated a sufficient voltage and power to support the
autonomous operation of the bq25504 PMU for RF input power
levels as low as −12.6 and −15.6 dBm at the “cold start” and
“hot start” condition, respectively. The experimental testing of the
PMU utilizing the proposed hybrid energy harvester confirmed
the reduction of the capacitor charging time by 40% and the
reduction of the minimum required RF input power level by 50%
compared with the one required for the individual RF and solar
harvester under the room light irradiation condition of 334 lx.

Index Terms— Additive manufacturing, autonomous RF sys-
tem, energy harvesting, hybrid system, Internet of Things (IoT),
power management, radio frequency (RF) circuits, rectennas,
solar cell, 3-D printing, wireless sensors.

I. INTRODUCTION

NOWADAYS, the desire for a smart society that utilizes
technologies such as large-scale sensor networks [1],

the Internet of Things (IoT) [2], and smart skins [3], [4]
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is continuously growing. One of the most pressing issues is
the lack of a sustainable power supply that could enable the
autonomous operation of these sensors and devices (motes).
Conventional autonomous devices heavily rely on primary bat-
teries, which can power the devices for only a certain amount
of time. Once the sensor devices use up the stored energy
in their batteries, the batteries need a replacement at a cost
that increases significantly as the number of sensor devices
in the system increases. To avoid this maintenance cost issue
and achieve completely self-sustainable low-cost ubiquitous
systems for the IoT and smart cities, research communities
have devoted a considerable interest in ambient energy harvest-
ing technologies. To maintain an effective operation of truly
autonomous systems, this technology set harnesses energy
from numerous ambient power sources such as solar, heat,
vibration, and electromagnetic waves using transducers and
stores it in energy storage components such as secondary
batteries and capacitors [5]–[7]. Among the ambient energy
sources, radio frequency (RF) energy is a highly attractive
energy source because of its almost ubiquitous availability,
especially in urban areas as well as the low cost and size of
transducers [8], [9]. However, compared to the energy density
of other energy sources, that of RF energy is typically very
low [5]. Therefore, RF energy harvesters cannot directly drive
devices that require relatively high power and voltage such
as microcontrollers, especially from a “cold start” condition.
Since low energy density levels cause a low RF-dc conversion
efficiency, RF energy harvesting is even more challenging to
be practically exploited [10]–[12].

A. Additive Manufacturing Techniques for
Ambient Energy Harvesting Modules

To overcome the low-energy-density problem in RF energy
harvesting, researchers have strived in the last several decades
to improve the performance of RF energy harvesters. In the
process, additive manufacturing technology has emerged as an
alternative to conventional fabrication techniques such as etch-
ing and milling [13]–[15]. Specifically, additive manufacturing
technology including inkjet printing, 3-D printing, and screen
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printing has proven to be a very efficient solution for low-cost
RF circuit patterning associated with an inherently high 2-D/
3-D resolution and a wide variety of printable materials [16].
In the field of electrical engineering, the inkjet-printing
technology has already enabled the easy realization of high-
resolution conductive traces that can support the operation of
circuits up to the subterahertz frequency range on a variety
of substrates including flexible materials such as paper,
plastic, and liquid crystal polymer [17], [18]. In addition
to conductive materials, various dielectric materials and
semiconductive materials can be printed using inkjet-printing
technology, which allows for the full printing of most basic
circuit components such as capacitors, inductors, antennas,
diodes, and so on [19]–[21]. Another additive manufacturing
technique, which has recently attracted the attention of the
research community, is 3-D printing, especially the fused
deposition modeling (FDM) technology [22], [23]. The wide
variety of printable materials for these additive manufacturing
techniques has also enabled the easy fabrication of both
transducers and energy storage components for ambient
harvesting from most energy sources.

B. Multienergy Source Hybrid Energy Harvesting

Numerous renewable ambient energy sources, such as solar,
heat, vibration, and electromagnetic waves, exist in nature.
Each ambient energy source exhibits different characteristics,
and they all have both advantages and disadvantages. In reality,
when autonomous systems completely rely on ambient energy
sources, the major challenges associated with harvesting a
single source of energy can cause critical issues for device
operation. For example, an autonomous system relying exclu-
sively on the energy harvested by a photovoltaic panel (e.g., a
solar panel) will fail in the absence of light. Instead of relying
on a single source, energy harvesting of multiple sources can
be complementary and enable truly autonomous operation, as
mentioned in [5]. Among various ambient energy sources,
solar energy has been one of the most commonly sought-after
because of the large power density available for harvesting
during the daytime (ca. 100 mW cm−2). Niotaki et al. [24]
have reported on a hybrid RF/solar energy harvester, which can
significantly increase the total available power available in a
system. As another example, Georgiadis and Collado [25] and
Donno et al. [26] have demonstrated a hybrid solar/EM energy
harvesting system which extends the operation range of a
passive RFID tag. The power conversion efficiency of electro-
magnetic energy contained in the solar spectrum to electricity
depends on the level of illumination, the photoactive material
and device architecture used. At low irradiance levels, like
the ones found indoors (ca. 100 μW cm−2), the performance
of a photovoltaic device becomes limited by increased power
losses that arise as the value of the device shunt resistance
becomes comparable to that of the characteristic resistance
of the cell; defined as the ratio between the open circuit
voltage and the short-circuit current. Among current photo-
voltaic technologies, those based on organic semiconductors
shown in [27] and [28] are particularly suitable for low-light
level operation. In addition, organic photovoltaic devices are

compatible with all-additive manufacturing methods such as
ink-jet printing [29] and are therefore attractive for integration
with RF energy harvesting modules to increase the available
power per unit area [30]–[32].

C. Challenges in Ambient RF Energy Harvesting

Regardless of the typically low energy density of ambient
RF, RF energy harvesting is an attractive research topic for
various reasons. First, RF energy can inherently penetrate most
walls, even opaque walls, so it is potentially more widespread
available than other ambient energy sources. In addition,
RF energy harvesters can operate at any time of the day
and with any topology. Finally, their miniaturized form factor,
their small physical dimensions, and lightweight enable us to
easily carry or wear them. On the other hand, the typically
low ambient RF energy density can be highly problematic,
especially when the RF energy harvester is integrated with
entirely autonomous systems because of their minimum input
power and voltage requirements. As a general trend, Schottky
diodes have been mainly used for RF energy harvesting
because of their low threshold voltage and fast switching
speed. However, Hemour and Wu [33] have reported that
the performance of off-the-shelf Schottky diodes are reaching
the maximum theoretical RF-dc conversion efficiency because
of inevitable series resistance, junction capacitance, and high
junction resistance associated with their operation principle,
especially with low RF input power. Therefore, several studies
have recently applied special types of diodes such as the
backward tunnel (Esaki) diodes and the metal-insulator-metal
diodes to rectify extremely low RF input power of below
1 μW [33], [34]. Another strategy is to maximize the available
RF input power using multiband frequencies by introducing an
ultrawideband/ multiband antenna and a wideband matching
circuit topology in the rectenna [8], [35]–[37].

Recently, subthreshold operation of a switching transistor
has been studied actively and it has been proven that some
transistors can operate even below 0.4 V in the field of
research [38], [39]. However, most off-the-shelf circuit compo-
nents require relatively high operation voltage. For example, a
typical transistor gate-source voltage requires at least 0.5 V
for switching operation and ICs such as microcontrollers
require an even higher operation voltage above 1.5 V [12],
[40], [41], whereas typical voltages from the rectifier with
RF input power under −20 dBm are below 0.3 V [42].
To overcome this low-voltage issue, researchers have devel-
oped dc–dc converters with low input voltage operation capa-
bilities. Carlson et al. [43] reported a dc–dc boost converter
that generates the output voltage of 1 V from the input voltage
as low as 20 mV, with the power consumption of 1.6 μW.
However, the voltage regulator requires at least 0.6 V of start
up voltage in a capacitor to initially start the operation of
the circuit oscillators. Another example is a self-powered
dc–dc converter reported in [44], which can generate the
output voltage of 1 V from an input voltage close to 100 mV
without any external power supply, but it requires at least
10 μW of input dc power and reported dc–dc conversion
efficiency is below 25% because of inevitable power loss
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Fig. 1. Block diagram of a hybrid RF solar powered autonomous mote.

associated with the self-oscillation. To satisfy both of these
power and voltage requirements, reported RF power sensitivity
is −13 dBm for 1 V and −7 dBm for 3 V of output voltage.
These facts imply that adding solar cells, which generate a
nearly constant voltage under sufficient illumination conditions
can enable the “cold start” start-up operation of a dc–dc
converter allowing RF energy harvesters to then scavenge
low power energy. At the same time, RF energy harvesters
continuously generate energy during the night time when solar
cells cannot generate any power.

To sufficiently address the main challenges of RF energy
harvesting, by taking advantage of the unique features of addi-
tive manufacturing, one possible solution is the combination
of multiple source ambient energy harvesting. In particular,
this research proposes the hybridization of RF and solar
energy harvesters in modules/topologies that can be fabricated
utilizing additive manufacturing technology. The following
sections of this paper deal with an overview of the proposed
hybrid RF solar energy harvesting system, the design and
preliminary measurements of the antenna and the rectifier,
the preliminary module-level operation results and the hybrid
harvester benchmarking in comparison to previously reported
RF/solar energy harvesters, while this paper closes with the
conclusions.

II. HYBRID RF SOLAR ENERGY HARVESTING SYSTEM

As a proof-of-concept prototype that can be easily imple-
mented in a compact form factor, this research utilized
a TI bq25504 ultralow power boost converter with battery
management IC, which has a self-powered dc–dc converter for
“cold start” operation and a high efficiency dc–dc converter
with maximum power point tracking for “hot start” opera-
tion [45]. Fig. 1 shows the block diagram of an autonomous
hybrid RF solar powered sensor device (mote). The device
consists of a dual port antenna both for harvesting and
communication at the 2.4 GHz ISM band, a solar cell, a
matching circuit, an RF-dc conversion circuit, a bq25504
power management unit (PMU), a capacitor/battery for energy
storage, a MOSFET switch, an MSP430 microcontroller
unit (MCU) [41], and a CC2500 transceiver for communi-
cations [46].

III. ANTENNA DESIGN AND MEASUREMENT

This proposed system uses the 2.4 GHz ISM band for
both energy harvesting and communications. Therefore, the

Fig. 2. (a) Side and (b) top views of the prototype of the rectangular shorted
antenna.

Fig. 3. Prototype of the dual-feed rectangular shorted slot solar antenna with
a flexible film solar cell. (a) Top. (b) Inside.

antenna requires a dual port configuration with a high
two-port isolation. In addition, circular polarization is suitable
for RF energy harvesting as it allows the rectenna to capture
signals with arbitrary linear polarization. In this scenario, a
properly excited rectangular shorted slot antenna [47], [48]
was identified as a strong candidate which also exhibits a
good impedance and polarization bandwidth. The biggest
novelty and challenge in designing the antenna for our energy
harvesting capable mote is to feature a simultaneous two-port
operation; one port for energy harvesting and another port for
communication while sharing the same rectangular slot. The
design and location of the feeding transmission lines as well as
the size and height of the ground plane are critical to realize a
good matching for both ports and a simultaneous high isolation
between the two ports. Since the rectangular shorted slot
antenna is an omnidirectional antenna, a reflector was placed
on the bottom of the package in order to increase the gain.
The package was printed utilizing a 3-D printer to precisely
control the distance between the ground of the antenna and
the reflector. The antenna was designed utilizing HFSS and
fabricated on a 0.762 mm FR4 substrate with dielectric con-
stant of 4.4 and loss tangent of 0.002 utilizing an LPKF Pro-
toMat S60 mechanical milling machine. Fig. 2 shows the side
and top views of the rectangular shorted antenna and Table I
summarizes the antenna design parameters. In this research,
port1 is for harvesting and port2 is for communication. Fig. 3
shows the pictures of the prototype of the solar antenna, i.e.,
an antenna with an embedded solar cell. The package was
created utilizing an FDM printer with polylactic acid (PLA)-
based material. For an initial simulation, the dielectric constant
of 3.1 and the loss tangent of 0.01 [49] were adopted. However,
Meriakri et al. [50] have reported a wide variation of dielectric
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TABLE I

PRELIMINARY DIMENSIONS OF THE DUAL-FED
RECTANGULAR SHORTED ANTENNA

Fig. 4. Simulated S21 with respect to frequency with varied ground size.

constant of PLA material (2.76 to 15.7) which can cause a shift
in the fabricated antenna operation frequency.

The design goals of the antenna are the following:
1) S11 and S22 below −13 dB (5%); 2) S21 below
−13 dB (5%); and 3) axial ratio below 3 dB in the frequency
range of 2.4–2.5 GHz. To satisfy these design goals, the
length (L) of the sides of the square slot and the length of the
gap (G) were determined to obtain a resonance at 2.45 GHz.
In terms of impedance matching, the length and the width of
the feeding signal lines can be adjusted to control the center
frequency of operation. In addition, the proposed antenna
design can adjust the center frequency of the two-port isolation
(the peak of transmission loss) almost independently of the
matching condition by varying the length of the square side
of the ground plane (L in). As illustrated in Fig. 4, preliminary
simulations varied L in from 42 to 48 mm, while a value of
45 mm was adopted for the initial antenna prototype. Fig. 5(a)
depicts the simulated (design and post fabrication) and mea-
sured S11 and S22, respectively. From the measurement, the
antenna features the operation range of 2.28–2.55 GHz, and
the simulation results match well with the measurement
results. However, as depicted in Fig. 5(b), the frequency at
the peak of transmission loss (|S21|) was shifted to lower
frequency. During the fabrication, an extra PLA layer with the
thickness of 0.5 mm was added below the top printed circuit
board (PCB) as a mechanical support of the antenna structure
preventing the top PCB from dropping in the middle of the
box. This extra thickness (TPE) was taken into account in the
postfabrication simulation model. Also, as mentioned above,
the dielectric constant of the PLA material for the package
can be higher than the value used in the initial simulation.
Therefore, the postfabrication simulation adopted the dielectric
constant of 4, and the simulation exhibited a good agreement
with the measurement. This fact implies that further accurate

Fig. 5. Measured and simulated (design and postfabrication) (a) S11, S22,
and (b) S21 of the dual-feed rectangular shorted slot antenna.

simulations for the antenna design require the accurate char-
acterization of the 3-D printed PLA material. Over all, the
measured S-parameters satisfied the design goals 1) and 2).

In addition to the S-parameters, this paper characterized
the other properties of the antenna through simulations and
measurements. Fig. 6(a) and (b) shows the simulated axial
ratio with respect to frequency at broadside (θ = 0°) and θ
direction rotation angle at 2.45 GHz, respectively. The axial
ratio is about 3 dB in the frequency range of 2.4–2.5 GHz,
which almost satisfies the design goal 3). Also, Fig. 7
which plots simulated total realized gain as a function of
frequency yielding a value of 7.4 dB at the center frequency
of 2.45 GHz. For the final prototype, a thin film solar cell,
which Section IV explains the detail, is placed on top of the
conductive area inside the slot without significantly disturbing
its radiation characteristics. Therefore, the radiation patterns,
depicted in Fig. 8, were also measured utilizing a LabVIEW
controlled automatic rotation setup and a vector network ana-
lyzer (Anritsu 37369d). The measurement utilized a broadband
horn antenna (AINFO LB-20245) as a reference. The mea-
surements depicted in Fig. 8 show that the solar cell does not
have a significant effect on the performance of the dual-feed
rectangular antenna. Fig. 9 shows the side and the top view
of the rectangular shorted antenna for the final prototype and
Table II summarizes the final antenna design parameters. For
simplicity in measurements, SMA connectors were connected
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Fig. 6. Simulated axial ratio of the rectangular shorted antenna with and
without the solar cell with respect to (a) frequency and (b) θ direction rotation
angle.

Fig. 7. Simulated total realized gain of the rectangular shorted antenna with
and without the solar cell.

to the edges of the antenna, but the final prototype of the sensor
device (mote) was designed to have all electronics connected
to the antenna on the bottom layer near the center of the rec-
tangular slot. Therefore, as shown in Fig. 9, the design of the
excitation lines was modified for the final prototype. Fig. 10
shows the simulated S-parameters of the final antenna design.

IV. RF-DC CONVERSION CIRCUIT DESIGN

AND MEASUREMENT

The solar cell selected for the proof-of-concept prototype
was the Power Film MP3-25 solar cell which has the dimen-
sions of 114 mm × 24 mm, short circuit current Isc = 48 mA,

Fig. 8. Measured and simulated normalized radiation pattern of the
rectangular shorted antenna with and without the solar cell. (a) φ = 0°.
(b) φ = 90°.

Fig. 9. (a) Side and (b) top views of the rectangular shorted antenna for the
final prototype.

TABLE II

DIMENSION OF THE RECTANGULAR SHORTED ANTENNA
FOR THE FINAL PROTOTYPE

open circuit voltage Voc = 4.1 V, and can provide up to
93 mW at 3 V under 1 sun irradiance of 100 mW cm−2.
Specifically for the 3-D printed prototype discussed in this
paper, only one fifth of the length of the solar module,
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Fig. 10. Simulated S-parameters of the final antenna design with respect to
frequency.

which exhibits about 0.68 V of open voltage and about
70.5 μW of maximum power under a room light condition
(334 lx = 49 μW · cm−2) with a dc load resistance of 3.8 k�,
was utilized in order to fit within the conductive surface inside
the dual-fed slot antenna, as shown in Fig. 3(a). The equivalent
circuit model of the solar cell was utilized to design the
harvester circuit in ADS. To begin with, this paper initially
characterized the RF-dc conversion circuit independent of the
solar cell.

The goal of the RF-dc conversion circuit design was to
produce sufficient voltage and power to drive the PMU.
Specifically, the bq25504 IC requires 330 mV and 15 μW
to start up from a “cold state,” and it can sustain operation
for a minimum input voltage of 80 mV. Also, the IC has
an integrated maximum power point tracking function which
optimally adjusts the load resistance value for the maximum
output power [45]. This paper utilized a two diode RF rectifier
(voltage doubler) circuit, which was necessary to accommo-
date a sufficiently high voltage to facilitate the start-up of the
dc–dc converter circuit, as shown in Fig. 11(a). To simplify the
layout, the solar cell output was connected using a series diode
at the output of the RF rectifier circuit as depicted in Fig. 11.

The matching circuit design was optimized to maximize
the dc output power for a given RF available input power of
−17 dBm. This is the minimum required RF input power to
generate the minimum dc input voltage (80 mV) of the PMU in
the “hot state,” according to preliminary simulations for differ-
ent dc output current values from the solar cell, corresponding
to different solar light irradiation conditions. Figs. 12 and 13
show the RF-dc conversion efficiency and the output voltage of
the rectifier prototype without connecting a solar cell as a func-
tion of the frequency for an input RF power level of −17 dBm
and as a function of the power level of the input (harvested)
RF signals at the frequency of 2.45 GHz, respectively. In these
figures, both “ideal” and “nonideal” are simulation results with
ADS. “Ideal” simulations use ideal lumped component models
and “nonideal” simulations use nonideal lumped component
models, provided by Johanson Technology for the components
used in the prototype. For these measurements, RF power was
measured using an RF power meter (NRP-Z211 from Rohde
and Schwarz). The aggregate dc output power (Pout) from the
RF energy harvester and the solar cell was calculated using (1),

Fig. 11. (a) Circuit diagram of the hybrid RF solar harvester. (b) Photograph
of the complete harvester prototype.

where Vout is the measured output voltage and Rload is the load
resistance. The RF energy harvester exhibits about 20%–45%
RF-dc conversion efficiency depending on the RF input power
in the range of −17–0 dBm

Pout = V 2
out

Rload
. (1)

Next, the performance of the RF-dc conversion circuit
including the solar cell was characterized through simulations
and measurements. Fig. 14(a) and (b) depicts the output power
and the output current from the solar cell for the optimal
load resistance of 3.8 k� with reference to the ambient light
intensity, respectively. The light intensity, measured utilizing a
luminometer, was controlled by adjusting the distance between
a table lamp and the solar cell. From these measurements,
the solar cell yielded 70.5 μW of output dc power and
135.5 μA of output dc current at the room light condition
of 334 lx irradiation. In addition, this paper simulated the
output power from the hybrid RF solar harvester with respect
to the current from the solar cell (I0) for the RF power levels
of −17 and −10 dBm for the optimal load at 2.45 GHz as
shown in Fig. 15. The simulation results confirm that the
dc combination of the solar cell and the RF circuit exhibits
a higher output dc power without affecting the performance
of the RF-dc conversion circuit and the solar cell. However,
if the solar energy is dominant, the performance of the solar
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Fig. 12. Measured and simulated (a) RF-dc conversion efficiency and
(b) dc output voltage with respect to frequency with optimal load resistance
at −17 dBm RF input power.

cell slightly degrades. Finally, Fig. 16 shows the simulated and
the measured S11 of the harvester for the input RF power of
−17 dBm at 2.45 GHz when the input current from the solar
cell is varied. The current from the solar cell was varied by
changing the light intensity in the same manner as described
above. The return loss (|S11|) increases first as I0 increases,
but it decreases if the input current is too large and the solar
power is dominant.

V. MODULE-LEVEL OPERATION TEST

After optimizing the subsystems of the proposed hybrid
harvester, a module-level operation test of the RF solar har-
vester utilizing a bq25504 module as a load resistance RL

in Fig. 11(a) was performed to evaluate the capability of the
harvester to “cold" start up the PMU. Fig. 17 shows the voltage
of the 100 μF capacitor that is integrated in the bq25504 PMU
during charging. The dashed line expresses the threshold
of 1.5 V when the IC switches the operation mode from the
cold start to the hot start. Similarly, the dotted line indicates
the threshold of 2.8 V when VBAT_OK signal, which is a
digital output for a battery good indicator, from the PMU is
sufficiently high so that the capacitor voltage is adequate and
the energy storage capacitor is ready to power the external dc
load by turning on a MOSFET switch. The maximum output
voltage is regulated at 3.3 V to protect a battery which can be
externally connected, but this voltage can be arbitrary selected
within the range of 2.4–5.3 V. The first three traces in Fig. 17

Fig. 13. Measured and simulated (a) RF-dc conversion efficiency and
(b) dc output voltage with respect to input power with optimal load resistance
at 2.45 GHz.

represent three different charging conditions: 1) −12.6 dBm
RF input power; 2) solar cell at room light condition; and
3) aggregate dc combining the two harvesters, respectively.
The input RF power of −12.6 dBm is the minimum required
RF power to start the operation of bq25504 module from
the “cold start” condition without using any solar cell. The
comparison between 2) and 3) in Fig. 17 suggests that the
charging time significantly decreases combining the dc output
of the solar and the RF harvesters. More specifically, the time
to charge the capacitor from 0 to 2.8 V under the charging
conditions 2) and 3) is 86 and 51 s, respectively. Therefore,
40% of capacitor charging time reduction is confirmed through
the measurement. The last trace in Fig. 17 shows another
charging condition 4) by combining the dc outputs of the
solar and the RF harvester for the lower input power level of
−15.6 dBm. In this trace, the change in slope around 2.5 V
indicates that the light intensity was drastically reduced from
334 to 18.9 lx at this point by covering the solar cell. The input
RF power of −15.6 dBm, which is the half of −12.6 dBm,
cannot support alone the operation of the “cold start” operation
mode. However, with the help of solar energy, this hybrid
energy harvesting system can go over the “cold start” mode.
For nonsufficient light irradiation conditions (e.g., in the night
or in completely dark rooms), even a solar panel may not
be used to “cold start” the system. However, once the IC
starts operating with “hot start” mode after an initial relatively
strong light irradiation, the input RF power of −15.6 dBm can
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TABLE III

ENERGY HARVESTING SYSTEM PERFORMANCE COMPARISON

Fig. 14. Measured (a) output dc power and (b) dc current (I0) from the solar
cell with respect to the light intensity for the load resistance of 3.8 k�.

maintain the perpetual operation of the IC, while the PMU
gradually charges the capacitor using the ambient RF energy
even under dark conditions.

VI. HYBRID HARVESTER SYSTEM

PERFORMANCE BENCHMARKING

Recently, there have been various reported energy
harvesting systems which utilize a PMU including a dc–dc

Fig. 15. Simulated output dc power with respect to the output dc current
from the solar cell (I0) for RF input power of −17 and −10 dBm.

Fig. 16. Simulated and measured S11 with respect to output current from
the solar cell (I0).

converter to increase the sensitivity of the systems. Therefore,
Table III summarizes the performance of recently reported
EM/solar and EM energy harvesting system in terms of
energy source, antenna operation frequency, maximum gain,
antenna polarization, communication capability, dc load,
and sensitivity, which is the minimum required RF power
to satisfy the dc voltage and power requirements for their
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Fig. 17. Voltage in the 100 μF capacitor that is integrated in the
bq25504 PMU during charging under different RF and solar conditions.
(1) −12.6 dBm RF input power. (2) Solar under room light condition.
(3) −12.6 dBm RF input power + solar under room light condition.
(4) −15.6 dBm RF input power + solar under room light condition until
cold start mode is over.

load. Compared with other EM/solar energy harvesters, the
proposed design has the highest antenna operation bandwidth,
highest gain, circular polarization, which is more suitable for
ambient RF energy harvesting than linear polarization because
of the unknown polarization of the harvested transmitting
antennas, and simultaneous wireless communication capability
while harvesting ambient energy. Regarding sensitivity, this
paper exhibits the lowest required RF input power among
the EM/solar energy harvesters summarized in Table III.
The sensitivity can be increased by improving the RF-dc
conversion efficiency and further reducing the system power
requirement. For example, Pinuela et al. [9] have reported
the lowest required RF input power of −29 dBm for the
same bq25504 PMU for the cold-start. Although, according
to the datasheet of bq25504 PMU, this IC requires the
minimum dc input power of 15 μW for cold-start [45], which
is more than 10 times higher than the reported sensitivity
in [9] without considering RF-dc conversion loss that is
typically more than 70% of RF input power with input power
below −20 dBm.

VII. CONCLUSION

This paper investigates the potential of multiple energy
harvesting system for the cold start and the subsequent
perpetual operation of low profile the low power wireless
sensor motes. This research effort demonstrated the design
of a dual solar and electromagnetic energy harvesting and
communication system which operates at 2.4 GHz ISM band
enabling the operation of a low power PMU for a wireless
sensor. The harvester consists of a dual-port rectangular
slot antenna, a 3-D printed package, a solar cell, an RF-dc
converter, a PMU, an MCU, and an RF transceiver and
every component was designed and characterized through
simulation and measurements. As a result, this novel antenna
with simultaneous harvesting and communication capabilities
exhibited a performance satisfying the design goals of:
1) S11 and S22 below −13 dB; 2) S21 below −13 dB; and
3) axial ratio below 3 dB in the frequency range of

2.4–2.5 GHz. Similarly, the designed miniaturized RF-dc
conversion circuit generated sufficient voltage and power to
support the operation of the bq25504 PMU from RF input
power as low as −12.6 and −15.6 dBm at the “cold start” and
“hot start” condition, respectively. The module-level operation
test of the PMU utilizing the hybrid RF/solar energy harvester
confirmed a 40% reduction in the capacitor charging time and
a 50% reduction in the minimum required RF input power
compared to the independent operation of the RF and the solar
harvester under the room light irradiation condition of 334 lx.
As a future work, all circuit components in Fig. 1 will be
integrated to two PCBs, one for the antenna, communication,
and rectification and another one for the power management
and the microcontroller. Both of them are arranged in a printed
3-D package which will have an opening to connect the
MCU to a debugger to program the chip. We plan to
connect the PCBs with a flexible ribbon cable in the
package. The solar cell will be attached on the top of
the communication/harvesting board. The MCU can be
programmed for wireless measurement as reported in [15].
The proposed hybrid energy harvester could find numerous
applications in IoT, smart skin and M2M applications in
rugged operation conditions.
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