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Abstract 
RF-MEMS design is made difficult due to the lack of tools capable of simulating both MEMS devices and their 
surrounding circuits.  Often MEMS components can have structures more than 100 times smaller than the 
surrounding circuit.  This paper presents FDTD based techniques that can be used to simulate large structures 
containing finely detailed components.  Particularly, a split-cell modeling technique is presented that allows for the 
modeling of a metal that intersects a cell.  This technique is applied to the modeling of a MEMS capacitor.  The 
technique allows for large cells to be used to model the entire device, with the split-cell modeling realizing the 
capacitor plate within a cell. 

 
I. Introduction 
 
RF-MEMS device design is a difficult and complex task.  Many popular microwave design methodologies fail to 
provide accurate results for devices consisting of compound microwave circuits and MEMS devices.  For example, 
microwave circuit simulators are limited by their models for various components, and cannot model all interactions 
between various (and physically disconnected) elements.  As circuits become more highly integrated this limitation 
becomes increasingly apparent.  Popular commercial electromagnetic simulators can compensate for these effects; 
however, their usefulness is limited by the size and complexity of the circuit that they can simulate.  Often a hybrid 
approach is used wherein the electromagnetic simulator is used to model complex devices (such as MEMS), and the 
results are fed into a circuit simulator.  This leads to simulation results that do not match measurement results of 
fabricated devices, which can lead to increased design times and a higher number of prototyping runs.  The second 
major difficulty of this approach is the difficulty of modeling MEMS devices in several different configurations.  By 
their very nature, MEMS are dynamic devices.  To characterize a MEMS device through simulation, several states 
must be modeled.  This adds to problem complexity by not only increasing the number of simulations that must be 
run, but in the number of configurations that must be created.  Quite often, the time taken creating the simulation 
input and grid is a significant part of the simulation time.  This paper presents variations that can be applied to the 
finite-difference time-domain (FDTD) electromagnetic modeling technique to model circuit elements that include 
MEMS devices.  It then uses these techniques to model a MEMS capacitor. 

One technique is the application of a variable grid [1].  A space-variable grid can be used to drastically 
reduce the number of cells needed to simulate a large problem.  Small features can be accurately modeled, while 
features such as connecting lines can be represented efficiently.  When applied correctly, this technique can provide 
an acceptably low level of dispersion. 

The second feature that can be added to model these devices is subcell modeling.  MEMS devices such as 
MEMS capacitors have membranes that can be very close to their supporting substrate.  Using this spacing as a 
minimum cell size in FDTD can constrain the grid size for the entire simulation.  By using a subcell modeling 



technique to create a ‘split-cell’ intersected by a metal the grid is not limited by this small cell size.  Furthermore, 
the split-cell method employed in this case can be used to place a metal membrane in an arbitrary location without 
modifying the remainder of the simulation.  This provides two unique opportunities.  The first is the ability to easily 
model devices in several configurations, the second is the ability to model dynamic devices by changing the metal 
position continuously during a simulation. 

The following sections discuss these modeling techniques and present how they can be used to model an 
RF-MEMS capacitor.  These techniques can be used to drastically reduce the computational resources needed to 
model a capacitor, allowing much larger overall structures to be simulated.  These techniques are implemented in 
such a way that they can be easily added to an existing FDTD code. 
 
II. Variable Gridding 
 

One of the most constraining aspects of an FDTD simulation comes from the requirement that the cell 
width be equal to (or often smaller than) the smallest feature of the device being simulated.  When simulating 
structures consisting of several different elements, such as MEMS circuits, this can lead to an extremely large grid.  
For example, if a MEMS capacitor that has a plate spacing of 3µm is situated on top of a 525µm substrate, 175 3µm 
cells (using the coarsest representation possible) are needed compared to 21 that could be used with a 25um spacing.  
If similar limitations occur in the other two dimensions of the grid, the total number of cells needed for the 
simulation can easily grow prohibitively large. 

A subgridding method which can compensate for this problem has previously been presented [2-3].  This 
technique subdivides sections of the FDTD grid, creating finer grids in these areas.  A routine must be implemented 
to interface the two different size grids.  This is important because there are grid points in the refined mesh that do 
not exist in the coarse mesh.  The mesh refinement used by this method is demonstrated in Figure 1a (in 2 
dimensions). 

The subgridding method is very useful for a variety of structures.  In particular, this method can be used 
when small complex devices are embedded in a coarse grid, such as scattering problems or devices fed by microstrip 
lines.  The difficulty in applying this method to an existing code comes from implementing the method by which the 
values in the subgrid are calculated.  In addition, the method of determining these values usually requires that the 
subgrid be evenly spaced in the interior region. 

Another method of modifying the grid to reduce the number of cells needed to simulate a structure is to 
introduce a nonuniform grid [4].  The nonuniform grid treats each direction separately, and allows each axis to be 
divided into any number of sections, each having a different cell length.  The nonuniform grid technique is 
represented in 2D in Figure 1b.  All three dimensions can be segmented in this way, creating a complex, and highly 
nonuniform, grid.  This method can be applied to an existing code easily, dx, dy, and dz simply need to be changed 
(a) (b) 
Figure 1: Variable gridding using (a) subcell and (b) nonuniform methods 



from a constant to an array.  In order to reduce ill effects that may rise from this method, it is important that the grid 
size not change from one cell to the next by more than a factor of two. 
 
III. Subcell Modeling 
 

The most difficult aspect of modeling RF-MEMS devices is the ratio between the feature size of the MEMS 
device and the feature size of the surrounding circuit.  Often times feeding lines and matching networks can have 
features at least two orders of magnitude larger than the small MEMS devices.  Using fixed, or even variable, FDTD 
grids to model these devices can lead to extremely large simulations.  By reducing the need to use a fine grid, the 
number of cells needed to simulate a structure can be drastically reduced. 

In addition to reducing the total number of cells required to simulate a structure there are other equally 
important advantages of using a split cell modeling method.  This method naturally matches an important feature of 
MEMS devices, their reconfigurability.  Using a fixed grid limits the number of states that can be modeled using 
FDTD to ones that can be placed on the fixed grid.  In devices such as capacitors, small changes in plate position 
can have a drastic effect on their performance.  Subcell modeling allows these features to be simulated in such a way 
that any position can be modeled.  Thus, multiple configurations of dynamic devices and devices whose parameters 
change during simulation can be modeled. 

The subcell method presented in this paper is based on techniques for conformal grid modeling [4] and 
subgridding [2].  The derivation presented is for a metal perpendicular to the y axis.  This method has the advantages 
of being easy to integrate into an existing code and adding low computational overhead.  This method could easily 
be extended to other directions and for curved structures that pass through cells. 

Figure 2 shows a standard FDTD grid with a y normal metal intersecting two cells.  Normally, metals are 

represented in FDTD by setting E fields tangential to the metal to zero.  In the case presented in Figure 2 the grid 
could be regenerated to allow this metal to lie along cells containing the E fields.  The structure that is being 
simulated may, however, make this impossible or impractical.  Another method is to zero the nearest fields to the 
metal.  However, this method effectively moves the metal to the nearest grid location and may cause unacceptable 
changes to the structure.  A third option is to split the cell into two cells that share the metal as an interface. 
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Figure 2: Metal intersecting FDTD grid 



This localized split cell modeling is demonstrated in Figure 3.  By splitting the cell the metal is now on a 
grid location where tangential E fields exist.  This technique doubles the number of cells in the area with the metal, 
however it only adds three field values per cell.  In the case shown in Figure 3, these are Ey, Hx and Hz fields.  The 
other fields are all located on the metal interface, and are always zero.  The modified FDTD grid fits the structure, 
however, special field update equations must be used in the area of the split cell. 

The update equations for the split-cell region can easily be determined using the Faraday’s and Ampere’s 
law in integral form derivation of FDTD [5].  Using this method the FDTD E field update equations are calculated 
using 
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The contour used for this integration is taken from the Yee cell, as shown in Figure 4a.  For the vast majority of the 
split cell region, standard update equations can be used with minor corrections.  The Ey fields require no change.  
On the border regions, where the two grids meet, the same Hx and Hz fields are used to update the Ey fields above 
and below the split region.  The domain of the H fields is the entire length of the cell, so no interpolation or 
averaging is needed.  Slightly modified update equations must be used for the Hx and Hz fields in the split region.  
The dy value used in the updates must reflect the true length of the cell.  In the area above the split, h (from Figure 
3) and, in the lower area, dy-h must be used as dy.  The H fields surrounding the split-cell region use the most 
heavily modified update equations. 
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Figure 3: Metal intersecting subcell modified FDTD grid

 
 The H fields bordering the split cell region have the Ey fields from both above and below the split metal in 
their Faraday contour.  This is demonstrated in Figure 4 (b).  The FDTD update equation for these fields uses both of 
the Ey fields, multiplied by their local dy.  When determining the local update equations, careful consideration must 
be taken to correctly choose the fields used in the update.  The Hz update equation used on the side of the split with 
the highest x value is 
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Similar equations are used on all sides of the split-cell region. 
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Figure 4: Orthogonal contours for determining update equations (a) standard (b) split cell border
Example 

echniques discussed in this paper can be used to simulate large scale structures such as those found in modern 
S circuits.  These devices may use many MEMS elements in addition to a complex microwave circuit to 

ect the elements.  These circuits may be large, necessitating the use of one or more of the above methods to 
late a device in a reasonable amount of time.  One element that may appear in these circuits is a MEMS 
itive stub.  These stubs can be used to provide a reconfigurable capacitance terminating a line.  Several of these 
itors can be used in parallel to create a wider range of tunable values.  These stubs are useful in reconfigurable 

its to create self-tuning systems.   
One such stub is pictured in Figure 5.  This stub uses a MEMS switch to connect to a large pad.  The total 

itance of the stub is due to both the circuit and the pad.  When the switch is in the up position, the capacitance 
er because there is no connection to the pad except for the relatively low capacitance of the switch in the “off” 

 which adds in series with the capacitance of the pad.  When the switch is in the down, or “on”, position, the 
itance is much higher due to the higher capacitance of the switch (nearly a short) and the pad in series. 

Two simulations of this device were performed.  The first simulation used the relatively mature variable 
method to accommodate the small capacitor spacing (3µm) and use a low number of cells to represent the 
m thick substrate.  For this simulation the smallest cell in direction of the thickness of the substrate is 3µm, 
h transitions slowly to a 25µm spacing in the bulk of the substrate, and the air above.  The grid in the other two 
tions is constant.  The substrate for the MEMS device is silicon, with an εr of 11.7.  The feed line is 130µm 
.  The pad is 715µm wide and 880µm long.  The gap between the feed line and the pad is 80µm. 

The second simulation perfo
nsions.  In the direction of the h
Figure 5: MEMS capacitive stub 
rmed uses the split cell method.  The split cell method uses a fixed grid in all 
eight of the substrate, the cell size is 24µm.  Using this spacing, the MEMS 



switch exists 3µm from the edge of the cell.  In order to provide a metal connection to the pad, the Ey fields at the x 
edges of the MEMS capacitor are zeroed. 
 The results of the simulation are presented in Figure 6.  In addition to providing for more reuse of a grid for 
multiple circuit configurations, the split-cell modeling technique reduces the number of cells.  The split cell grid is 
86x54x77, the variable cell grid is 86x60x77.  While this is not drastic, it would be very important in larger 
simulations, and could be more important if split cell modeling was used in multiple directions.  Also, the total 
computational space was 1296µm long in the direction normal to the substrate in the split cell grid, versus 1151µm 

in the variable grid case.  This demonstrates how fewer cells can be used to model a larger space.  More importantly, 
the time step is several times larger in the split cell case due to the increased cell size.  The split cell simulation 
required only 6000 time steps, compared to 30,000 for the variable grid. 

 
Figure 6: Capacitance of stub, variable grid,split-cell, and measurement 

 It can be seen in this case that the split-cell simulation very closely matches the measurement results, while 
using relatively large cells.  The variable grid used in this case scaled from 25µm cells to 3µm cells using 
intermediary cells approximately 1.5 times smaller than the previous cell.  Seven different cell sizes were used to 
accomplish this.  This was most likely too abrupt a change.  In order to model the device more effectively, a more 
gradual change is required, which will result in a grid with many more cells. 
 
V. Conclusion 
 
 MEMS circuits can be complicated to model using popular commercial tools.  In particular, unexpected 
interactions that are not correctly handled by these tools can lead to a large amount of difference between simulated 
and measured results.  This paper presents techniques that can be used to simulate these circuits using the FDTD 
technique.  Specifically, a split-cell modeling technique was presented which allows the modeling of metals that cut 
through an FDTD cell.  This method can reduce both the number of cells in a simulation and the number of time 
steps that a simulation must be run. 
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