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Abstract 
A novel time-domain technique is proposed for the analysis of  MEMS-based variable 
devices involving motion to arbitrary in-plane directions using the adaptive body fitted grid 
generation method with moving boundaries. MEMS technology is growing rapidly in the RF 
field and the accurate design of RF MEMS switches that can be used for phase shifting or 
reconfigurable tuners requires the computationally effective modeling of their transient and 
steady-state behavior including the accurate analysis of their time-dependent moving 
boundaries. Due to the limitations of the conventional time-domain numerical techniques, it is 
tedious to simulate these problems numerically. The new technique proposed in this paper is 
based on the finite-difference time-domain method with an adaptive implementation of grid 
generation. Employing this transformation, it is possible to apply the grid generation 
technique to the analysis of geometries with time-changing boundary conditions. A variable 
capacitor that consists of two metal plates that can move to arbitrary in-plane directions plates 
is analyzed as a benchmark. The numerical results expressing the relationship between the 
velocity of the plates and the capacitance are shown and the transient effect is accurately 
modeled.  

�
1. Introduction 
The accurate knowledge of the electromagnetic field variation for a moving or rotating body 
is very important for the realization of new optical devices or microwave devices, such as the 
RF-MEMS structures used in phase-shifters, couplers or filters [1,2]. In this paper, we 
propose a new numerical approach for the analysis of this type of problems that alleviates the 
limitations of the conventional time-domain techniques[4]-[11]. Employing the 
transformation with the time factor, it is possible to apply the grid generation technique of [3] 
to the time-domain analysis of the moving object.  With such a grid, the FD-TD method can 
be solved very easily on a “static” (time-invariant) rectangular mesh regardless of the shape 
and the motion of the physical region, something that makes it an especially good tool to 
analyze arbitrary shape and motion. In this paper, this simulation method is applied to the 
analysis of a two-dimensional MEMS variable capacitor with arbitrary in-plane motions. 
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2. Two- Dimensional Variable Capacitor with Arbitrary Motions 
The geometry to be considered here is shown in Fig.1. Under the combined effect of  
mechanical and electrical force, the two plates are assumed to move with different  
velocities to arbitrary in-plane directions. For the two-dimensional TM-propagation case, as 
shown in Fig.1, there are only Ex, Ey, Hz nonzero components with a time variation given by 
the following equations.           

 







∂

∂
−

∂
∂=

∂
∂

x

E

y

E

t

H yxz

µ
1

                              (1) 







−

∂
∂=

∂
∂

x
zx J

y

H

t

E

ε
1

                                (2) 






 +

∂
∂−=

∂
∂

y
zy J

x

H

t

E

ε
1

                              (3) 

 
where ε , µ  are the constitutive parameters of respective medium. In Fig.1, the 

configurations of the physical and of the computational regions are shown. The interdigitated 
fingers are assumed to move to arbitrary directions in the xy-plane with velocities v and u, 

respectively and the direction of their motion is shown by the angles vθ  and uθ . Using a 

coordinates’ transformation technique, the time-changing physical region (x,y,t) can evolve to 
a time-invariant computational domain. For the geometry of Fig.1, the transform equations 
between the physical and the computational regions are chosen as : 
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,where n=1,2,3, m=1,2,3 and )(),(),(),( 4321 thththth , )(),(),(),( 4321 tgtgtgtg  are written in the 

following form assuming that the plate velocities remain constant for the whole time of their 
motion. 

tvxth v )cos()( 11 θ+=                                (7) 

tuxth u )cos()( 22 θ+=                                (8) 

tvxth v )cos()( 33 θ+=                                (9) 
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tuxth u )cos()( 44 θ+=                               (10) 

tuytg u )sin()( 11 θ+=                               (11) 

tvytg v )sin()( 22 θ+=                               (12) 

tvytg v )sin()( 33 θ+=                               (13) 

tuytg u )sin()( 44 θ+=                               (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Fig1. Physical region and computational region 
 
 

The functions )(),(),(),( 4321 thththth , )(),(),(),( 4321 tgtgtgtg describe the movement along the x 

and y axis, respectively, and allow for the realization of a rectangular grid with stationary 
boundary conditions. The partial time-derivatives in the transformed domain (ξ,η,τ ) can be 
expressed in terms of the partial derivatives of the original domain (x,y,t) using eqs.(4)-(14). 
The FDTD technique can provide the time-domain solution of the rectangular (ξ,η,τ ) grid. 

The stability criterion in this case is chosen as 2δ≤∆tc , where 00 yx ∆=∆=δ , assuming 

the grid is uniformly discretized in both directions. In general, δ is a space increment for x  
and y direction when the grid increment is minimum (minimum cell size). 
� � �  
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3.  Numerical Results 
To validate this approach, numerical results are calculated for a two-dimensional variable 
capacitor with the movement of the fingers only to the x-direction. The grid includes 200x200 

cells and, λ5=== LLL yx , 200Lyx =∆=∆ , cLt 800=∆ . In this case, as the plates are 

moving only to the x-direction away from each other, the angles are $$ 180,0 == vu θθ and as 

the plates are approaching each other, the angles are $$ 0,180 == vu θθ . The initial plate 

separation is 5L  and the grid is terminated with Mur’s absorbing boundary conditions. The 

relation between the velocity and the transient value of the capacitance between the moving 
fingers, assuming that they start to move away and approach each other at t=40 time-step and 
stop at t=60 time-step, is shown in Fig 2. It can be observed that different velocity values lead 
to different values of the capacitance, since they affect the spacing of the fingers for a specific 
to time-step. Fig.3 displays computational results of the time dependence of the transient 

capacitance for velocity values in the range of  cvu 3102 −×==  to cvu 3108 −×== , 
assuming that the plates move away from each other from t=10 time-step to t=60 time-step. 
The horizontal axis indicates the time expressed in time steps and the vertical axis indicates 
the value of the transient capacitance. The stationary value (v=u=0) is displayed for reference 
reasons and demonstrates a (smoother) time-variation due to the time evolution of the 
excitation function itself. In Fig.4, the time dependence of the transient capacitance is 
demonstrated for various velocity values, assuming that the plates approach each other from 
t=20 time-step to t=60 time-step. Following this approach for the whole period of the motion 
of the fingers, it is easy to perform an accurate analysis of the transient response of the 
structure and predict the ringing parasitic effects. It is clear that the transient effect is more 
pronounced for the higher values of velocity.  �  
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Fig2. Capacitance vs Velocity 
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Fig.3 Time dependence of transient capacitance for each velocity, 
where plates go away from t=10 time- step to t=60 time-step 
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Fig.4 Time dependence of transient capacitance for each velocity, 
where plates approach each other from t=20 time- step to t= 60 time-step 
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Conclusions 
A novel time-domain modeling technique that has the capability to accurately simulate the 
transient effect of variable capacitors with arbitrary in-plane motion of their plates has been 
proposed. This technique is a combination of the FDTD method and the body fitted grid 
generation technique. The key point of this approach is the enhancement of a space and a time 
transformation factor that leads to the development of a time-invariant numerical grid. The 
numerical results of the relation between the capacitance and the velocity of the motion are 
shown for a MEMS capacitor and demonstrate its unique computational advantages in the 
modeling of microwave devices with moving boundaries.  
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