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Abstract: MEMS technology is growing rapidly in RF field, because of the advantage over p-i-n 
diode or FET switches. An accurate knowledge of the electromagnetic field evolution around a 
moving or rotating body is very important for the design, optimization and realization of new optical 
devices or microwave devices, such as the RF-MEMS structures. We propose the numerical technique 
based on the finite-difference time-domain method with an adaptive implementation of grid generation. 
This simulation method is applied to the analysis of a two-dimensional MEMS variable capacitor with 
accelerated motions. The acceleration of the MEMS capacitor is derived under the equilibrium 
between the spring force and electrical force. Using this acceleration, the numerical results that express 
the relationship between the acceleration of the plates and the spring constant and the mass of the 
plates are shown. 
 
Keywords: RF MEMS,  body fitted grid generation method with moving boundaries, FD-TD method, 
acceleration, mechanical resonant frequency 
 

1. Introduction 
 
As RF MEMS has many application areas[1],[2], for the modeling and optimization of microwave 

devices, an accurate knowledge of the electromagnetic evolution around a moving or rotating body is 
required. But due to the limitations of the conventional numerical technique for the time changing 
boundaries, it is tedious to solve these problems numerically in electromagnetic field.  

 We propose the numerical technique based on the finite-difference time-domain method with an 
adaptive implementation of grid generation [3]. In this paper, this simulation method[4] is applied to 
the analysis of a two-dimensional MEMS variable capacitor with accelerated motion effect. The 
acceleration of the plates is derived from the equilibrium between the spring force and electrical force. 
Using this acceleration, the relation between the mass, the spring constant and the oscillation of the 
plates are shown. This acceleration is useful to obtain the switching time. 

 
2. Mechanical and Electrical Equations 
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The dynamic behavior of the MEMS structure is shown in Fig.1, and  the top plate is suspended by 
a spring. Under the combined effect of mechanical and electrical force, the top plate moves until the 
equilibrium between the electrostatic and mechanical forces is reached. Fm means spring force and Fe 
means electrostatic force and these forces are expressed in the following equations, respectively[1]. 
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, where m is the mass of the plate and b is the mechanical resistance and k is the spring constant, V is 
the bias voltage. From the equilibrium between the spring force and the electrostatic force, the 
following equation is derived. 
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And from eq.(3), the acceleration x” is obtained. The geometry to be considered here is shown in Fig2. 
Under the combined effect of mechanical and electrical force, the two fingers are assumed to move 
with different velocities for x-direction. For the two-dimensional TM-propagation case, as shown in 
Fig.2, there are only Ex, Ey, Hz nonzero components with a time variation. In Fig.2, the configurations 
of the physical and of the computational regions are shown.  

Under the combined effect of mechanical and electrical force, the plates are assumed to move for x-
direction with velocities v and u, and the acceleration av, au respectively. Using a coordinates’ 
transformation technique, the time-changing physical region (x,y,t) can evolve to a time-invariant 
computational domain. For the geometry of Fig.2, the transform functions between the physical and 
the computational regions are chosen as : 
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Fig2 (a)Physical region   

(b)Computational region 

 

 
Fig1 Functional model of MEMS capacitor 



,where n=1,2,3, m=1,2,3 and )(),(),(),( 4321 thththth , are written in the following form assuming that 
the plate accelerations, velocities remain time changing values for the whole time of their motion. 
 

2
11 2

1)( tavtxth v++=                                                      (7) 

2
22 2

1)( tautxth u++=                                                     (8) 

2
33 2

1)( tavtxth v++=                                                      (9) 

2
44 2

1)( tautxth u++=                                                   (10) 

 
The functions )(),(),(),( 4321 thththth ,describe the movement along the x axis, and allow for the 
realization of a rectangular grid with stationary boundary conditions. The partial time-derivatives in 
the transformed domain ),,( τηξ  can be expressed in terms of the partial derivatives of the original 
domain (x,y,t) using eqs.(4)-(10). The FDTD technique can provide the time-domain solution of the 
rectangular ),,( τηξ grid. The stability criterion in this case is chosen as 2δ≤∆tc , 
where 00 yx ∆=∆=δ , assuming the grid is uniformly discretized in both directions. In general, δ is a 
space increment for x  and y direction when the grid increment is minimum (minimum cell size). 

 
3.Numerical Results 

 
To validate this approach, numerical results are calculated for a two-dimensional variable capacitor 

with the movement of the finger only to the x-direction.  The grid includes 200x200 cells , input 
frequency is f=20GHz and λ5==== LLLL zyx , 200Lyx =∆=∆ , (sec)10125.3 13−×=∆t .The 
initial plate separation is 5L  and the grid is terminated with Mur’s absorbing boundary conditions. 
Here, only the left plate is assumed to move due to the coupling of the electrostatic and the mechanical 
forces. From eq.(3), the acceleration value is derived. Inputting this acceleration value to the transform 
function h1(t),h3(t), new capacitance C and displacement, transformation function h1(t),h3(t) and 
acceleration av are obtained. And then from the capacitance and displacement, new acceleration is 
obtained. Iterating of this algorithm, it is easy to get the capacitance, acceleration and displacement 
controlled by the coupling of spring and electrostatic force.  

In Fig.3, when the left plate moves away from the right one, the derived mechanical resonant 
frequencies are shown. Fig.3 displays the time dependence of the acceleration for each mechanical 

resonant frequency values in the range of sec)/(107 rad
m
k
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when the left plate moves away from the right one. The mechanical resonant frequency in Fig 3(a) is 
10  times of the resonant frequency in Fig3(b) and 10 times of the resonant frequency in Fig3 (c) and 

also, 2
3

10  times of the resonant frequency in Fig 3(d). According to these values, the ratio of the 
resonant frequency is shown accurately in each figures. In Fig 3, when the mechanical resonant 
frequency is low, the amplitude remains almost constant value. Since the typical MEMS device has 
low mass around 10-10kg and spring constant around 5-30N/m, the mechanical resonant frequency ω is 



on the order of sec)/(105 rad [1]. In this paper, the values of the mechanical resonant frequencies are 
on the order of 107 , but if the calculation time is taken more, it is possible to get the results around the 
order of 105. The results derived in this paper for acceleration, mechanical resonant frequency are very 
important values for deciding the switching time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Conclusions 
 
A novel time-domain modeling technique that has the capability to accurately simulate the transient 

effect of variable capacitors with accelerated motion controlled by the coupling of the electrostatic and 
mechanical forces is proposed. Using this technique, the numerical results of the acceleration for each 
resonant frequency is shown for a MEMS capacitor. The results derived in this paper are very 
important for deciding the switching time.  
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Fig3 Time dependence of the acceleration for each resonant frequency 
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