
Beowulf Cluster Design for Scientific PDE Models

B. McGarvey, R. Cicconetti, N. Bushyager, E. Dalton, M. Tentzeris
School of Electrical and Computer Engineering, Georgia Institute of Technology

http://www.athena-em.gatech.edu/Beowulf/index.html

Abstract

This paper details some of the basic issues that arise when designing a Beowulf cluster for particular types of
scientific simulations. The general problems of interest are partial differential equations (PDEs). These equations
describe natural phenomenon and can be numerically solved. Finite differencing is used to solve the system of
equations. This method naturally delineates the problem into four distinct categories based on the span of the data
stencil used to update the next point: Independent, Nearest Neighbor, Quasi-Global, and Global. This delineation
also relates the communication requirements between the independent processes. Other important factors include
computation and memory requirements of the algorithm and particular problem. Design tradeoffs are presented with
regards to algorithm development, communication architecture, and node configuration.

1.1 Introduction

Prior to the advent of Beowulf clusters [1], researchers
simulating complex systems were limited to time-
sharing on traditional “big iron” centralized in
supercomputing centers. The limited availability of
resources greatly restricted researchers’ ability to
experiment and limited the number of projects
considered. Clusters changed the paradigm by offering
distributed computational horsepower to more
researchers than was previously possible. Beowulf
clusters have expanded the field of numerical modelers
by yielding a single user supercomputer at 1/100th-
1/10th the cost of a traditional “big iron” with
comparable performance.

This paper details some of the basic issues that arise
when designing a Beowulf cluster for particular types
of scientific simulations. A Beowulf cluster is usually a
group of computers networked together on a private lan
to perform distributed tasks. The general problems of
interest are systems defined by partial differential
equations (PDE). These types of problems are
commonly found describing physical systems such as
electrodynamics or fluid flow. Due to the complex
nature of the problems under scrutiny, numerical
approximation is often the only method of finding an
acceptable solution. The methods for finding solutions
to these systems are quite varied. Focusing on a
particular method that is relatively simple to
understand: finite-difference time-domain solutions.

1.2 Background

The computational electromagnetics lab (Athena-EM)
at the Georgia Institute of Technology needed more
computational capacity to adequately perform research.
Our basic choices were renting time at traditional
supercomputing centers, purchasing proprietary
specialized workstations, or building a Beowulf cluster.
We chose the Beowulf cluster as it provided the most
flexibility and control at an affordable price. This paper
came out of our initial experiences from building our
Beowulf cluster. During the investigation and planning
stages, we found that there were no easy answers to the
question of optimization, and if a cluster would help
with our needs.

The main difficulty in planning our cluster was our lack
of experience and established design guidelines. Asking
the experts often yielded the standard response, “it
depends on your problem.” Another difficulty we
encountered was the informational gaps between the
cluster architecture designers and the numerical
modelers. Each group understands the difficulties
associated with their specialty, but no common
language seemed to exist. By bringing the disparate
groups together new and novel designs for clusters may
evolve for solving this class of problem.

2.1 Partial Differential Equation Modeling

In an effort to describe the physical world, scientists
and physicist use differential equations to approximate
it. The mathematical study of natural phenomena is

performed using differential equations. It generally
describes the relative rates of changes of variables in a
system. PDEs are continuous functions with infinite
resolution, but a computer has finite resolution.
Therefore, the PDE must be converted to a discrete
approximation of the continuous function, before a
solution can be found. For example, an electromagnetic
simulator [2] was used as a benchmark for this paper
[3]. In the electromagnetic simulator, one of the 2D
governing Maxwell’s equations has the continuous
form (1), but becomes (2) after discretization.

The notation used is to express the location in time and
space of a particular variables’ value. In this case n
represents the time step and i represents the spatial
location of the variable. The sub- and super- scripting
are shortcuts used to help develop the models by
compacting the diverse information.

2.2 Basic Algorithms

The numerical details of the finite-difference time-
domain algorithm are complicated, but a simplified
version is very easy to understand and covers the
majority of the reason one needs a cluster. A simple
case provides that there are N points on a grid and two
variables associated with these points, each inter-
dependent. The algorithm fixes one variable while
changing the other, and then marches forward in time a
small amount to update the other variable, in a leapfrog
fashion. So the number of data points always remains
constant, N. Basis functions affect the update algorithm,
by determine the number of elements in the previous
time-step’s set that are required to update a single point
in the next time step. As the basis function expands, the
communication requirements grow.

2.3 Basis Functions

The basis functions and method used to transform the
continuous space into a discrete one greatly affects the
stencil of the update algorithm. The stencil is how these
sets of problems are being delineated. The name of the
problem type relates how many adjacent elements of
the set are required for updating the next data point.

Independent

This type of problem is included for completeness. It is
not normally used in PDEs, but it is of interest to the
Beowulf community at large. It commonly referred to
as “embarrassingly parallel,” because the update
algorithm requires the data only from the previous time
step or initial conditions and the general algorithm, i.e.
co-located models (Fig 1).

Fig. 1: Independent point update methodology

Nearest Neighbor

One method of approximating derivatives is to use
central differences. First derivatives calculated using
central differences only use values from neighboring
points. This method can be used to solve several
classes of equations, such as Maxwell’s
electromagnetic equations using the Yee-FDTD scheme
[4].

Fig. 2: Nearest Neighbor point update methodology

Quasi-Global

Other higher-order FDTD schemes and methods for
discretization result in the need for more than just the
adjacent points, the scheme determines the number of
points required from the original point. One such
scheme is the Battle-LeMarie Multi-Resolution Time-
Domain (MRTD) method [5].

x

H

t

E yz

∂
∂

ε
=

∂
∂ 1

(1)

()211
21

21
21

1 /n
/i

/n,y
/i

n,z
i

n,z
i HH

x

t
EE +

−
+

+
+ −

∆ε
∆+= (2)

Fig. 3: Quasi-Global point update methodology

Global

The moment method with a global basis function
requires that all the other data points in the space be
known to update any single point, This is generally the
limiting case of data interaction; updating any point
depends on the data from every point on the grid [5].
Matrix inversion loosely fits into this category.

Fig. 4: Global point update methodology

3.1 Basic Performance Characteristic

Amdahl’s Law

Parallel computing performance is often measured with
reference to speedup (3).

The ratio of the time it takes a single process to
complete a task to the time it takes N processes to
complete the task. For a perfect program one would
expect a speedup of N linear with the number of
increasing processors. Amdahl’s Law (3) states, the
best possible performance increase in time, given that a
particular program is perfectly parallelizable, is 1/N,
where N is the number of processors [6]. But most real
world applications do not fare that well. An alternate
method for calculating Speedup was presented by

Amdahl in (4), where s is the serial fraction of the
program and p is the processors. In every program that
one is attempting to parallelize there are sections that
can be parallelized and others that must remain serial
for various reasons. The fraction of the program that is
serial determines the maximum speedup and is limited
by 1/s even as p goes to infinity [7]. As is obvious,
keeping the serial portion small is highly desirable in
order to keep speedup near linear.

3.2 Real World Issues

Amdahl’s Law relates the theoretical limit of possible
speedup. Traditional supercomputers are built with
ultra-high speed interconnection networks with very
low latency in order to keep the serial fraction small.
Beowulf clusters suffer from relatively slow inter-
processor communication in comparison. To achieve
significant improvement the communication time needs
to be minimized while the computation time is
maximized.

Computation Time

The differential equations governing the system and the
method used for discretization predetermine the relative
complexity of the update algorithm. This in turn
determines the average time required to calculate the
next value of a single data point. Not only does the
complexity of the update sequence have an impact, but
the type of operations required can also have a
significant impact upon performance. For example, a
floating-point divide is a non-pipelined function of
many modern processors, thereby greatly reducing
performance.

Communication Time

The effect of the communication time requirements
becomes obvious as the data dependency increases
along with the domain of the basis function and more
data is required to be passed from one unit to another.

3.3 Granularity

Early in the development of Beowulf clusters people
began to talk about granularity of problems. Granularity
can be related to the computation/communication ratio.

p

s
s

Speedup
−+

=
1
1

(3)
rs)N processo(time

)processor(time
Speedup

1=

(4)

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Processors

S
pe

ed
In

cr
ea

se

Figure 1: Independent Results

Skyvase
Pearl Harbor

By keeping this number small, the theoretical maximum
speedup can nearly be reached. Granularity issues can
impact any type of problem if a good ratio is not
achieved. For the theoretical limit to be approached, the
inequality must be satisfied. Otherwise, the ratio will
determine the maximum speedup possible for that
configuration of the problem.

Several of the experiments performed will illustrate this
inequality.

4.0 Experiments

All experiments were performed on our homogeneous
cluster as described using the fast Ethernet
configuration except where noted. The experiments
were designed to test the four basic types of problems.

4.1 Independent

Fig. 5: PVMpov Results

PVMpov [8] satisfies the requirement of only requiring
one data point and an algorithm to evaluate the next
data point. Two separate well-known scenes were
rendered, skyvase.pov [9] and pearlharbor.pov [10].

Skyvase was selected because it is the benchmarking
scene PVMpov has used for many years. Pearlharbor
was selected in an attempt to increase the granularity.
Fig 5 shows the results.

The PVMpov program divides the computational space
into small, equal-size blocks. The two scenes vary in

complexity. The Pearlharbor.pov is significantly more
complex than skyvase.pov, but as the number of nodes
increases the communication overhead becomes the
limiting factor. The small dataset is a trade off.
According to the makers, PVMpov was designed for
non-homogenous clusters [8].

4.2 Nearest Neighbor

For this experiment, an in-house parallel FDTD
electromagnetic simulator was used [3]. We studied a
small data set and a large dataset. The grid size was
limited to one that could remain resident in RAM of a
single node for comparison purposes. Blocking calls
were used in swapping data between the nodes for
illustration. The results are presented in Fig 6.

Fig. 6: Hydra-FDTD Results

For the small problem, the speedup tapers off as the
subdivided blocks become too small, but the larger
problem still maintains acceptable granularity and the
slope of the speedup curve only decreases slightly.
Similar results are shown as for the independent
problem, but as the granularity is better, the theoretical
limit is more closely approached.

4.3 Quasi-Global

The results for GADGET were inconclusive. An
alternative program is required for conclusive results
[11].

4.4 Global

Two separate methods were used to evaluate our
cluster’s performance for global problems. The first is a

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9
Figure 2: FDTD MPI Speedup

Processors

S
pe

ed
In

cr
ea

se

FDTD MPI small
FDTD MPI large

processorsNumber of
Serialion TimeCommunicat

n TimeComputatio
≥

+

basic gravity simulator that was developed for
evaluating performance and implementing a MPI
program [12]. The other method used to evaluate the
performance of the cluster was LINPACK [13]. For
many scientific problems, inverting large matrices is the
preferred method for finding the solution.

GravSim Results

The each line in Fig. 7 represents the problem size for
the n-body gravity simulator, O(N2). The problem is
symmetrically divided. It shows dramatically the results
of poor granularity. For 128 points when the number of
processors reaches eight the performance significantly
degrades and does not recover, but the larger problems
scale close to the theoretical limit and nearly linear. The
numerical artifact for the 128-body, 16-processor case
was caused by a one of the nodes having a faster
processor.

Fig. 7: GravSim Results

It is important to understand that for the large problems
that demonstrate linear speedup with this small cluster
would behave in the same manner as the small
problems.

LINPACK

As many global problems involve matrix inversion,
LINPACK was chosen as a test case, since it solves a
dense system of linear equations by inverting a matrix.
It is another method for finding a solution for a global
problem. In our testing, we found that 4 nodes, using a
low-latency, high-bandwidth switching fabric, nearly
outperformed 8 nodes on a standard fast Ethernet
connection, showing that matrix inversion does benefit
significantly from the high bandwidth low-latency
switches that GigaNet CLan provides.

5.0 Results

To acquire valid test cases for comparison, tradeoffs
had to be made. This required that the data set under
test be limited to what could remain resident in RAM
without having to swap to disk. As the number of
processors increased the data set size remained constant
yielding smaller data sets for the larger cluster and
increasing the communication penalty. This excludes
one of the main advantages of a cluster; the cluster can
have N times the amount of available memory than just
one individual node may have, enabling large complex
devices to be designed and optimized.

The communication method was also limited to
blocking calls. The experiment design called for this
method to test the inherent latency and bandwidth of
the system. For this class of problems where the data
interaction is predetermined, an algorithm to eliminate
the wait for data swapping is relatively straightforward.
By taking advantage of non-blocking calls, the
programmer can simultaneously swap data and update
cells by working from the inside out.

6.0 Conclusions

Our Beowulf cluster has not only functioned as a test
bed for cluster research, it has provided the
computational needs of our lab and research into new
and novel RF packaging devices.

Design Tradeoffs

Designing an effective cluster involves designing for a
specific type of problem or making tradeoffs to satisfy
the requirements of multiple problems while staying
within budget constraints. Fast Ethernet can handle all
the algorithms fairly well. A high-speed low latency
interconnectivity fabric is only required for those
systems that have large basis functions or very small
data sets under investigation. These types of networks
tend to be very expensive and have limited support.

Design Issues

If the users are processor bound, it may well be wise to
choose symmetric multi-processing computers (SMP).
Other choices that can predetermine the number of
processors per computer may be the air-conditioning
and space considerations. Individual nodes take up a lot
of space and produce considerable heat. Our cluster is
in the center of our workspace. This makes
maintenance and security of the system trivial. Our lab

0 5 10 15 20
0

2

4

6

8

10

12

Number of Processors

S
pe

ed
up

128
256
512
1024
2048
4096

temperature suffers from the changing load of the
system generating significant temperature swings.

Cluster Network Recommendations

For Independent, Nearest Neighbor, and Quasi-Global
(with small basis functions) the optimal design appears
to be a cluster with N nodes and a fast Ethernet
network. For Global and Quasi-Global (with large
spanning basis functions), a low-latency high
bandwidth has significant advantages and provides
speedup where Fast Ethernet was unable to do so.

Cluster Node Recommendations

The node selection is determined by whether the
algorithm is memory- or processor-bound; if the
program is processor-bound, SMP machines that share
memory is an efficient method to increase the number
of available processors for the same spatial footprint.
SMP machines make excellent nodes when the
problems under investigation are not memory bound.
More nodes increase the total available memory, but
increases information swap time and heat production.

Acknowledgement

The authors would like to acknowledge the support of
DELL Computers, the Yamacraw Initiative of the State
of Georgia, NSF career award, and NSF packaging
research center.

Beowulf Cluster Specifications

8 –Nodes: Configuration
Dell PowerEdge™ 1300
Dual PII 500MHz (512k cache off die)
512MB SDRAM
SCSI II 9.1GB drives
IDE CDROM
Floppy
1 – 3COM Tulip™ based fast Ethernet card
4 – Starfire™ base fast Ethernet cards
(4 of the nodes) GigaNet CLan

Network Switch
HP ProCurve 4000M 40 port

GigaNet Switch
CLan 5000 8 port

References

[1] Beowulf: A Parallel Workstation for Scientific
Computation, D. Becker, T. Sterling, D. Savarese, J.
Dorband, U. Ranawak, C. Packer, Proceedings,

International Conference on Parallel Processing, 95,
www.beowulf.org/papers/ICPP95/icpp95.html

[2] A. Taflove and S. Hagness, Computational
Electrodynamics, the finite difference time domain
approach, 2 nd ed., Boston, Artech House, 2000.

[3] Hydra-FDTD, in house electromagnetic simulator
based on designs presented in [2] and [4],

[4] K. S. Yee, “Numerical solution of initial boundary
value problems involving Maxwell’s equations in
isotropic media,” IEEE Transactions on Antennas and
Propagation, vol. AP-14, May, pp. 302-307, 1996.

[5] E.Tentzeris, R.Robertson, A.Cangellaris and
L.P.B.Katehi, “Space and time adaptive gridding using
MRTD”,Proc. of the 1997 IEEE Symposium on
Microwave Theory and Techniques, pp.337-340,
Denver, CO.

[6] Maximizing Beowulf Performance, R Brown,
Proceedings 4th Annual Linux Showcase & Conference,
Atlanta GA, www.usenix.org/publications/library
/proceeding s/als20 00/full_papers/brownrobert/
brownrobert.pdf

[7] Parallel Computer Architecture, D. Culler, J. Singh,
A Gupta, Morgan Kaufmann Publishers Inc, San
Francisco, CA, 1999.

[8] PVM patch for POV-Ray – PVMPOV, A. Dilger,
H. Deischinger: PVMpov Version 3.0, Jakob Flierl:
PVMpov patch to work with POV-Ray 3.1,
http://pvmpov.sourceforge.net/

[9] POVBENCH, A.Haveland, www.haveland.com

[10] First Strike at Pearl, N.B. (beliaev@utu.fi), Glenn
McCarter (gmccarter@hotmail.com),
www.geocities.com/SoHo/Workshop/9193/index.html

[11] GADGET: A code for collision less and gas
dynamical cosmological simulations, Springel V.,
Yoshida N., White S., 2001, New Astronomy, 6, 51,

[12]GravSim, in house tool written by R. Cicconetti

[13] www.top500.org/lists/linpack.html

