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Abstract  —  The modeling of RF integrated structures with fine metallic details using time-domain 

simulators is addressed.  The key features identified as difficulties in modeling metallic structures in these 

techniques are dielectric and metal loss and complexity of geometry.  A method to model loss that involves 

the use of a quasi-static simulator to identify correction factors that can be applied to a time domain 

simulator is presented.  In addition, a novel MRTD subcell method is presented that can be used to simulate 

fine metallic structures and other subcell effects such as the presented correction factors.  An example 

simulation of a finely detailed structure using this technique is presented. 
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I. Introduction 

Modern microwave structure design is becoming more difficult due to the 

integration of both technologies and functionalities.  The decrease in size and increase in 

proximity of circuit elements is contributing to the inaccuracy of traditional design 

methodologies.  In order to model devices accurately, designers are turning to full-wave 

simulators. 

In order for full-wave simulators to be used effectively in the modeling of highly 

integrated microwave circuits, it is important to improve their computational efficiency 



while accurately modeling the design structures.  These criteria are often mutually 

exclusive.  Several techniques [1,2] have been presented that allow the modeling of 

complex features that are smaller than the cell size in a given method, employing special 

updates and grid modifications to the cells surrounding the feature.  This paper gives an 

overview of two new methods that have been used to model complex metallic structures 

as well as increase the speed of the simulation.  One technique utilizes subcell modeling 

in the MRTD method, while the second performs corrections to the FDTD method itself.  

It is also shown how the FDTD based method can be performed in MRTD using the 

subcell MRTD method. 

One of the most important elements of accurately simulating structures using time 

domain techniques is the modeling of metal and dielectric loss, which can determine the 

performance of a device and be the difference between working in simulation but failing 

in practice.  The loss of non-dispersive dielectrics can be handled naturally in time 

domain methods by including a loss term in Maxwell’s equations when deriving the 

scheme.  Metal loss can be more difficult, however. 

In many circuits the thickness of the metal when compared to the substrate 

thickness can be negligible.  Due to this, it is often not practical to model metals as highly 

lossy substances with a finite thickness.  The grid required to model these devices can 

easily be computationally prohibitive.  In order to combat this limitation, methods exist to 

model the effect of a lossy metal on the circuit, while not having to simulate the 

metallization space to determine skin depth effects [3]. 

Another limitation of modeling modern structures is their physical complexity, 

such as multilayer modules with irregularly shaped ground planes.  Time-domain 



simulators utilizing cartesian grids must use small cells to represent the complex features 

of the devices being modeled.  In recent years, the Multiresolution Time-Domain 

(MRTD) technique [4] has been suggested as a method to overcome many of these 

difficulties.  The advantages of this method come from its time- and space-adaptive grid.  

Recently, a method that allows for the modeling of metal cells within a cell has been 

proposed [5]. 

This paper presents an overview of recent advances in the modeling of metal 

structures in time-domain methods that can efficiently simulate two difficult to address 

limitations, loss and complex geometry. 

 

II. MRTD Background 

Multiresolution time-domain is a name that has come from applying the 

multiresolution properties of wavelet expansion to Maxwell’s time-domain curl 

equations.  The resulting set of time domain equations is similar in many ways to the 

finite-difference time-domain (FDTD) technique.  Due to the multiresolution nature of 

the MRTD, however, the method has several features that make it broader and potentially 

faster than FDTD. 

For the purposes of this paper, a 1D derivation of the MRTD technique will be 

presented that explains the major features of MRTD without becoming overly complex.  

The equations discretized in this method are:  
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To derive the method, the E and H fields are represented as a scaling and wavelet 

expansion of each function, and the method of moments is applied.  For this paper, Haar 

wavelets (Figure 1) will be used.  Haar wavelets have the advantage of being simple to 

apply; however, for this application their finite domain nature is necessary for the 

modeling of hard boundaries.  Equations (3) and (4) are the expansions of the E and H 

fields in scaling functions and wavelets, (5) and (6) are the scaling function update 

equations for the E and H fields. 
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In the above equations, )()( mxxxm −∆=ϕϕ  and ))(2(2 2/
, pmxxrrr
pm −−∆= ψψ , 

represent the scaled and translated versions of the scaling and wavelet functions.  The 

level of wavelet resolution is r, rmax is the maximum resolution level to be used in the 

simulation.  The time step is represented by n, and m represents the spatial location.  The 

E and H fields are offset in both space and time.  The location of the H fields are 

represented by the primed components, n’=n+1/2, m’=m+1/2^(rmax+2).  The offset 



between m and m’ ensures that resolution is correctly doubled for each level of wavelet 

resolution added [6]. 

The wavelet resolution level can be varied in both space and time [7].  By 

applying both an absolute and relative threshold, wavelets can be tested to determine if 

they provide a significant contribution.  This can be performed continuously during the 

simulation.  The overall effect is to reduce the number of calculations performed 

compared to fixed grid techniques, because wavelet coefficients are only calculated when 

high field variation occurs in their vicinity. 

 

III. MRTD Subcell Method 

The novel method presented in this paper allows the simulation of a metal that 

overlaps only part of a cell.  In standard time domain methods, such as FDTD and most 

MRTD methods, PEC boundaries are represented by setting the field components 

tangential to the metal surface to zero.  One way that this can be accomplished in MRTD 

is to set all scaling and wavelet functions within a cell to zero.  If PEC boundary 

conditions are applied in this manner, PEC sections must be at least the size of one cell. 

If a PEC is to only overlap part of a cell, the scaling and wavelet function 

coefficients of the fields in a cell must add such that the fields in the area intersected by 

the PEC are zero.  This condition must be artificially imposed on the grid after the 

standard electric field updates are calculated.  However, this condition must be imposed 

such that the field magnitudes on the remainder of the cell are the same as before the 

condition is applied.  This technique does not affect the surrounding fields, as the only 

fields required for the update of each electric field component are its previous value and 



the values of the surrounding magnetic fields.  The decoupling of the electric field 

components from their neighbors is implicit in the method. 

Figure 2 shows a 2D Haar-MRTD cell.  The cell uses a wavelet resolution of 1, 

which means that two levels of wavelets are used (0 and 1).  The 1D scaling and wavelet 

functions in each direction are shown on each side.  Note that the 2D scaling/wavelet 

functions used to represent the fields in this simulation are the products of the 1D 

scaling/wavelet functions.  For the technique being discussed, the representation in 

Figure 2 is useful.  However, it is important to understand that there are 22R+2=16 (for 

R=1) functions per field per cell. 

The shaded area in the bottom half of the cell represents the PEC overlapping the cell.  

In order to model this cell, the E fields in the cell are first updated using the standard 

Haar-MRTD update equations.  Next, the coefficients for the field in the cell must be 

altered such that the fields in the PEC region become zero without changing the field 

values in the non-PEC area. 

A technique that allows for individual equivalent grid points to be zeroed can be 

derived through the use of the reconstruction matrix.  The matrix, R, transforms the 

wavelet coefficients to their equivalent grid points when the scaling/wavelet coefficients 

and equivalent grid points [8] are treated as vectors.  In Haar-MRTD there are as many 

coefficients as equivalent grid points, and thus R is square and each set of 

scaling/wavelet coefficients leads to a unique field distribution.  The inverse of the matrix 

R-1, then, can be used to transform arbitrary field values into their wavelet decomposition 

(discrete wavelet transform).  The application of a PEC then becomes a three step 

process.  First, the R matrix is used to transform the wavelet values into the field values 



at the equivalent grid points.  Next, the field values that coincide with PEC locations are 

zeroed.  Finally, the field values are transformed back to their wavelet coefficients using 

R-1 and the simulation continues.  Using this method, any combination of equivalent grid 

points can be zeroed. 

The wavelet decomposition matrix can be determined prior to simulation, therefore no 

matrix inversion is performed during simulation.  In addition, the three step process 

described in the previous paragraph can be performed in one step, with one matrix 

multiplication.  A PEC matrix, P, can be defined which directly transforms the wavelets 

from their non-PEC to PEC values.  This matrix can be determined prior to simulation as, 

 'RRP 1−=  (7) 

In this equation R' is the standard reconstruction matrix, with the rows that correspond to 

the PEC field points set to zero. 

For example, in rmax=0 MRTD, reconstruction can be written as 
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where the coordinates of the left hand E fields are as in Figure 3, and the right hand E 

vector represents the E scaling/wavelet coefficients. 

If equivalent grid points (2,1) and (2,2) of Figure 3 are to be zeroed, 
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because, as shown in (8), the third and fourth rows of the reconstruction matrix give the 

fields at these points.  In this case 
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and, using (7), 
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It is clear that if no PEC is applied, R'=R and P is the identity matrix.  Using the PEC 

matrix, P 

 x
ji,n

x
PECj,i,n EPE =  (12) 

If this matrix is used in the case of the previous example, the coefficients contained in 

x
PECj,i,n E  will be different than those in x

ji,n E ; however they will reconstruct to the same 

values at all points in Figure 3 except for (2,1) and (2,2), where they will reconstruct to 0.  

If the P matrices are determined prior to simulation, the application of PEC at arbitrary 

equivalent grid points becomes a matter of matrix multiplication in each cell that contains 

a PEC. 

This technique has other direct applications to MRTD.  The application of any 

condition that requires the modification of the field values at individual grid points can be 

performed using this approach.  For example, an arbitrary value can be added to any 

equivalent grid point in order to simulate source conditions.  Using this decomposition 

technique, the excitation can be finely shaped to match a desired mode. 



 

IV. Hybrid Method 

An alternative technique that improves the accuracy of the simulator in the areas of 

metals involves the hybridization of FDTD and an electrostatic/magneto-quasistatic 

solver.  The hybrid modeling technique presented here uses the quasistatic field solvers to 

determine the potential/surface currents over lossy/metal surfaces (e.g. a ground plane in 

a packaged microsystem) [9,10].  The solution from the quasistatic field solver is then 

used to calculate correction factors for an FDTD grid, which are applied to the time-

domain solver to increase the accuracy of the finite-difference equations.  The fine grid 

used by the static field solver also displays clearly the areas of the fastest field variation, 

so that the FDTD solver can take advantage of the evidential knowledge of the steady-

state fields by incorporating adaptive gridding, while areas of low field variation can be 

simulated with a much coarser grid. 

The combination of the static solver and the FDTD method is an attempt to resolve 

some of the difficulties associated with modeling highly conductive, thin materials in the 

time domain.  Researchers often rely on “common sense” approaches to generate the 

mesh for full-wave simulation, and this can result in inaccuracy in areas of high field 

variation.  The static solver is used in conjunction with a variable-grid FDTD mesh to 

reduce errors due to mesh size near structure discontinuities.  One of the main advantages 

of the static solver is that, since it has no time-marching component, it does not take as 

long to process as a dynamic simulation of comparable resolution. In addition, it can be 

used as a preprocessing step that can optimize the mesh for the full-wave simulation. 



In order to integrate the quasistatic solver with the FDTD algorithm, correction 

factors are calculated based on the static field distributions.  This is accomplished by the 

use of the quasistatic solvers to calculate the field distribution over the static mesh.  

These field values are used as the components of the integral approximation of Faraday’s 

and Ampere’s laws (13), (14).   
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Once the quasistatic fields have been calculated, the field component at the center of 

the dynamic grid cell (as shown in Figure 4) is used to calculate the dynamic grid integral 

approximation for use in the calculation of the correction factors.  The expressions for the 

two types of correction factors, using generic field components, are given in (16) and 

(17), where lCF  represents the line integral correction factor, ACF  represents the surface 

integral correction factor, and the ∆-terms represent the sizes of the coarse FDTD cells 

around which the integrals are discretized using the quasistatic values.  The F values in 

the numerators of the correction factor expressions are the quasistatic field values over 

the number of static cells that occupy the discretized integration area.  In the 

denominator, the F values are the quasistatic value at the exact location it occupies at the 

coarse-mesh FDTD cell, shown by the dots in the middle of the dynamic cells in Figure 

4. 
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The magnitude of the correction factors comes from the difference between the field 

integral approximations over the two different grids.  As can be surmised from Figure 4, 

in areas of very high field variation, the different resolutions can produce large 

magnitudes of correction factors. 

Following the derivation of the FDTD update equations from the integral forms of 

Maxwell’s equations [11] and incorporating the correction factor terms in the 

formulation, the update expressions for Hx and Ex are derived as shown in (18) and (19) 

(conductivity terms and nonessential subscripts are omitted for simplicity). 
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The relationship of the field components and the approximations of the integral 

equations can be seen in Figure 5, which shows the contours and surfaces used in this 

calculation.  The contour integral of the electric field is related to the surface integral of 

the magnetic field by Faraday’s law.  In this illustration, the surface integration of the Hx 

field is related to the integral of the contour including the Ex and Ey field components.  

The relation for the Ex field is similar, and the derivation is the same. 

The end result of this hybridization is that a given structure can be simulated in less 

time than with conventional FDTD.  The coupling with the quasistatic solver reduces the 

computational load by allowing the use of a coarser FDTD grid while regaining some of 



the accuracy lost by correcting discretization errors in the dynamic simulation.  In 

addition, there is very little alteration to the standard FDTD algorithm.  The only addition 

is the insertion of the correction factors in the field update equations, which are 

determined prior to the FDTD simulation, and will not add extra execution time to the 

dynamic simulation.  And, as previously stated, since the quasistatic solver involves no 

time-stepping, it takes much less time to run than the dynamic solver.  One of the few 

disadvantages of the hybrid method is a necessary reduction in the time step size due to 

the introduction of the correction factors in the update equations.  Since the fields are 

multiplied by numbers that can be larger than one, the stability of the scheme can be 

compromised if the time step used is close to the Courant limit.  This phenomenon can be 

countered by reducing the time step in proportion to the magnitude of the largest 

correction factors. 

 

V. Hybrid Method in MRTD 

The hybrid method presented above can also be applied directly to MRTD.  Using the 

subcell modeling method that was shown for PECs, the hybrid method can be easily 

applied in MRTD.  This method can be demonstrated by examining the 2D MRTD 

update equations.  For the 2D TEz mode, the update equation for the Ex field is [5], 

 ( )z
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21ε∆y
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In the above equation, E and H are the vector of scaling/wavelet coefficients as in (8).  

The U matricies represent the inner products of scaling/wavelet coefficients.   

In (20) the E scaling/wavelet coefficients are directly determined from the H 

scaling/wavelet coefficients.  However, the correction factors determined from the hybrid 



method must be directly multiplied with field values.  In order to apply these correction 

factors, the equation must be converted to a pointwise form.  This can be accomplished 

by multiplying (20) with the reconstruction matrix, 
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noting 

 z
ji,

1z
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and defining 

 1RURU −='  (23) 

In this form, x
ji,nER  is the vector of pointwise E fields and z

ji,1n HR −  is the vector of 

pointwise H fields.  To apply the correction factors, a matrix C of correction factors must 

be multiplied by each H field vector in (21) 
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The C matrix has the correction factors on the diagonal, and zeroes in the off diagonal 

elements.  When multiplied, then, each of the H fields is individually modified by the 

corresponding element of the C matrix.  Next (24) can be multiplied by R-1 to convert 

back to scaling/wavelet form.  The resulting equation, 
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gives a direct update of the scaling/wavelet coefficients if 

 RCURU '1C −=  (26) 

To apply this method to MRTD, UC must be determined in a preprocessing step.  

Once determined, the update equations are exactly the same as standard MRTD.  The 



method adds no overhead to the MRTD update scheme.  This is an excellent example of 

how the MRTD PEC subcell scheme previously presented can be used to apply other 

subcell effects. 

 

VI. Example – PEC Screen 

One important application of this method is the simulation of arbitrarily shaped PEC 

structures, such as EBG and via-array based geometries (e.g cavities and crosstalk-

reducing via-array walls).  For this purpose, a parallel plate waveguide intersected by a 

PEC screen was simulated. 

The structure being modeled in this example is presented in Figure 6.  This structure is 

a parallel plate waveguide that is intersected by metal planes with small apertures.  This 

structure is analogous to structures used in many modern multilayer substrate 

technologies, in either via fences or patterned ground planes.  While not offering a 

significant  practical benefit, it allows both a demonstration of the simulation method and 

an effective comparison to FDTD. 

The structure was first simulated in a 2D, rmax=2, MRTD scheme.  Figure 7 shows a 

detailed view of the grid of the first four walls of the PEC screen.  The shaded cells show 

where the PEC boundary condition is applied.  This structure was then simulated in 

FDTD using an identical grid.  The time domain output voltage from both simulations is 

presented in Fig. 8, an excellent agreement can be seen.  The difference between the 

output voltage of the two simulations, normalized to the maximum voltage, is presented 

in Figure 9.  The size of this error indicates that the schemes are identical and differences 

are due to numerical round off error. 



In order to demonstrate how this technique can be used to achieve true adaptive 

gridding, another simulation was performed.  In this simulation, the maximum wavelet 

resolution rmax=2 is only used in screen area of the grid and the surrounding two cells.  

Outside of this area, rmax=1 is used, which represents the largest equivalent cell spacing 

that yields acceptable numerical dispersion for this case.  The time domain output of this 

case is presented in Figure 8.  Unlike the FDTD/MRTD comparison, these schemes are 

not equivalent and very small, but observable, differences occur.  The magnitude of the 

difference between the schemes, normalized to peak output voltage, is presented in 

Figure 10.  The rmax=1 grid has lower resolution, however results are very close to those 

of the rmax=2 grid.  The rmax=1 case, however uses 48 fewer grid points per field per cell, 

and thus represents both a memory and execution efficiency of 75% over the rmax=2 and 

FDTD case. 

 

VII. Conclusion 

The modeling of conductors in time domain often leads to many difficulties.  Either 

by trying to match a grid to a complex shape or accurately modeling loss, it is often a 

requirement to sacrifice time for accurate results.  Two methods were presented in this 

paper that allow for the modeling of these structures while offering improved speed when 

compared to similar methods.  The subcell MRTD method provides a framework that can 

be used to model features that are smaller than an MRTD cell.  This is demonstrated with 

both PECs and the hybrid correction factors.  Using this technique, the full advantages of 

the MRTD time- and space-adaptive grid can be realized for finely detailed structures.  In 

addition, the loss and inaccuracies associated with metal simulation can be treated in a 



simple way.  Finally, these techniques can be easily added to existing codes, allowing 

improvements in efficiency that do not require large amounts of code rewriting. 
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Figure 1:Haar scaling function (ϕ, left), 0th, 1st, and 2nd resolution wavelets (ψ, right) 

 



 
Figure 2: 2D Haar-MRTD-1 cell showing half metallization 

 
 

 

Figure 3: Equivalent grid points of 2D MRTD cell with rmax=0 

 
 

 

 

Figure 4: Orientation and alignment of the static and dynamic grids 

 



 

Figure 5: Faraday contour showing the field relations for the calculation of the Hx 

field 

 

 

Figure 6: Parallel plate waveguide with PEC screen 

 

 

Figure 7: Cells in screen area for parallel plate waveguide with PEC screen 

 



 

Figure 8: Time domain output voltage for parallel plate waveguide with PEC screen, 

FDTD/MRTD/MRTD variable grid comparison 

 

 

Figure 9: Magnitude of difference between MRTD and FDTD parallel plate waveguide 

with PEC screen output voltage (normalized to maximum voltage) 

 



 

Figure 10: Magnitude of difference between MRTD and MRTD variable grid parallel 

plate waveguide with PEC screen output voltage (normalized to maximum voltage) 
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