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Abstract: For the design, optimization and realization of frequency selectable patch antennas , 
a numerical technique for the analysis of antennas with mechanically/MEMS-enabled moving 
parts is proposed.  The accuracy of this technique is evaluated through the calculation of the 
numerical results that express the relation between the velocity of the moving part and the S11 
parameters. 
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1. Introduction 
 
Due to its inherent low-power and miniaturization advantages over p-i-n diode or FET 

switches, RF MEMS technology has rapidly developed [1]-[3]. Also, frequency selectable 
antennas is useful for wireless applications. For the realization of these configurable  
antennas, MEMS antennas are proposed. An accurate knowledge of the electromagnetic field 
evolution around a moving or rotating body is required for the realization of new optical and 
microwave devices, such as the RF-MEMS structures used in phase-shifters, couplers or 
filters, as well as reconfigurable antennas. In this paper, we propose a numerical approach for 
the analysis of this type of problems that alleviates the limitations of the conventional time-
domain techniques [4]. By using a transformation with a time factor, it is possible to apply 
the grid generation technique of [5] to the time-domain analysis of the moving object. This is 
a feature that makes the new method especially useful for analyzing moving objects of 
arbitrary shape. In this paper, this simulation method is applied to the analysis of a  patch 
antenna with moving parts, that aims to extend the design of [6] to reconfigurable center 
frequencies. The numerical results that express the relation between the velocity and the 
return loss ( S11 parameters) are shown to validate the proposed approach.  
 
 

2. Two Dimensional Micromachined Patch Antenna Model 
 

The geometry to be considered here is shown in Fig.1. Without loss of generality and as a 
proof of concept, under the combined effect of the mechanical and the electrical force, the top 
patch/membrane is assumed to move with constant velocity for a specific time vertically 
and/or horizontally to modify the central frequency and the bandwidth. This effect is 
equivalent to the motion of the with constant velocities to the opposite direction. It is easier to 
simulate the motion of the bottom plate, because it’s a uniform metal (single boundary 
condition). On the opposite, the simulation of the top membrane’s motion would be more 
tedious since it would involve the combination of two boundary conditions (dielectric/metal). 
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For the two-dimensional TM-propagation case, there will be only Ex, Ey, Hz nonzero 
components with a time variation given by the following equations 
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where ε , µ  are the constitutive parameters of the respective media. In Fig.1, the 
configuration of the physical region is shown. The bottom plate is assumed to move to the x,y 
directions with velocities v and u, respectively. Using a coordinates’ transformation technique, 
the time-changing physical region (x,y,t) can evolve to a time-invariant computational domain 

),,( τηξ . n,m are the indices of each subregion in x- and y-direction. The number of 
subregions depends on the geometry of the moving parts of the geometry.  The transform 
equations between the physical and the computational regions are chosen as : 
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where n=1,2,3,4,5 m=1,2,3,4,5 and ),(0 th  ),(1 th  )(2 th , ),(3 th  ),(4 th  ),(5 th  ),(0 tg  ),(1 tg  ),(2 tg  

),(3 tg  ),(4 tg )(5 tg  are written assuming that the plate velocities remain constant for the whole 
time of their motion. 1−nα , 1−mβ are coefficients to normalize the computational region. The 
coordinates 4321 ,,, xxxx , and 4321 ,,, yyyy  represent the initial positions of the plates. The 
functions )(),( 21 thth , )(),( 43 thth , )(),( 21 tgtg , )(),( 43 tgtg describe the movement along the x and 

Fig. 1. Side View of the Model

metal

X

y

xL

yL
air

85



y axis, respectively, and allow for the realization of a rectangular grid with stationary 
boundary conditions, where ,0)(0 =th  ,)(5 xLth =  ,0)(0 =tg yLtg =)(5 . The partial time-
derivatives in the transformed domain (ξ,η,τ) can be expressed in terms of the partial 
derivatives of the original domain (x,y,t) using eqs.(4)-(8). The FDTD technique can provide 
the time-domain solution of the rectangular  (ξ,η,τ) grid. The stability criterion in this case is 
chosen as 2δ≤∆tc , where, assuming the grid is uniformly discretized in both directions. In 
general, δ is a the minimum space increment (minimum cell size) for x  and y directions. 
 
 

3. Numerical Results 
 

To validate this approach, numerical results are calculated for a microstrip antenna with 
the bottom plate moving  only to the x-direction. The grid includes 200x200 cells and, input 
frequency is f=10GHz and λ3==== LLLL zyx , 200Lyx =∆=∆ , cLt 800=∆ , where c is 
a velocity of light. The initial plate separation is 5L  and the grid is terminated with Mur’s 
absorbing boundary conditions. Fig 2 shows the time dependence of the transient capacitance 
for the velocity values in the range of cv 3105 −×−=  to . cv 3107 −×−= . As a reference 
reason, the stationary value is shown. The stationary value has a good agreement  with the 
theoretical result. It is easy to perform an accurate analysis of the transient response of the 
structure and predict the ringing parasitic effects. It is clear that the transient effect is more 
pronounced for the higher values of velocity. Fig3 shows the variation of the center frequency 
for the different velocity values for the antenna with moving plates for a motion lasting 1000 
time-steps. In this figure, the thick solid line shows a stationary case, the thin solid line shows 
that a bottom plate approaches to the upper plate with the constant velocity, cv 3105.1 −×= , 
and the dashed line shows that the bottom plate goes away from the upper plate with the 
constant velocity, cv 3105.1 −×= . It is observed that the difference velocity value makes a 
different resonant frequency. The stationary antenna has a resonant frequency around 10 GHz. 
There can be seen a shift of the resonant frequency for the moving case. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig2 Transient capacitance for each velocity values
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4. Conclusions 
 

In this paper, a novel reconfigurable patch antenna with mechanically/MEMS enabled 
moving parts is proposed. For the analysis and design of a reconfigurable patch antenna, a 
time-domain numerical technique is presented. For the validation of this technique, the 
numerical results of the relation between the capacitance and the velocity of the motion are 
shown. And also the relation between the central (resonant) frequency and the velocity of the 
plate and the direction of the motion is derived by using the proposed technique. A shift of the 
resonant frequency can be observed for different velocities.  
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Fig3 S11for various velocity values
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