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Abstract 

This paper presents neural network and genetic algorithm 
based modeling and design of millimeter wave RF front end 
circuits. The neuro-genetic design methodology is composed 
of two stages. Stage one consists of the development of an 
accurate neural network model for the microwave filters from 
the measured data. This model can be used to perform 
sensitivity analysis and derive response surfaces. In the 
second stage, the neural network model is used in conjunction 
with genetic algorithms to synthesize millimeter wave devices 
with desired electrical specifications. The synthesis 
methodology uses an accurate model that accounts for the 
manufacturing variations and parameter indeterminacy issues. 
Furthermore, the genetic synthesis algorithm uses a priority 
scheme to account for tradeoffs among various electrical 
characteristics to provide the best design. This method has 
been used to synthesize mm-wave low pass and band pass 
filters. The electrical response obtained from the layout 
parameters predicted by the method matches the desired 
electrical characteristics within 5%. The generic nature of the 
technique suggests potential extension to other mm-wave 
front ends, such as antennas, diplexers and baluns. 

1. Introduction  
Microwave filters are an important component in wireless 

communication systems. However, millimeter wave 
microwave component design poses great challenges due to 
the requirements of high frequency operation, where there is 
enhanced parasitic coupling, transmission, and radiation loss. 
The effects of metal roughness and variations in the dielectric 
constant also have significant impact on mm-wave circuit 
performance. Existing tools are limited in their capability to 
model the complex, nonlinear behavior of such devices [1]. 
There is significant variation in their measured and simulated 
behavior of due to the impact of manufacturing variations and 
modeling inaccuracies at high frequency. Therefore, there is 
need for a design methodology that uses measured data and 
accounts for manufacturing variations. 

There are two aspects of microwave design. The first step 
is to derive an accurate model, and next step is to use the 
model to interactively synthesize devices with desired 
electrical characteristics. Several previous attempts have been 
made to model and synthesize microwave filters using various 
CAD methods. Most approaches combine finite element 
techniques with optimization methods like gradient descent 
and genetic algorithms [2-3]. However, such approaches are 
often tedious, since each iteration of the optimization process 
requires the simulation of a device structure with new sets of 
parameters using the EM simulator. Typically, hundreds of 
iterations are required to obtain a good solution. EM 
simulation methods are also inadequate because they require 

approximation, either in the description of the structure to be 
analyzed (metal roughness and surrounding environment) or 
in terms of boundary conditions. Finite element models are 
accurate, but time-consuming. Regression models are faster, 
but lack accuracy. On the other hand, analytical physical 
models are complex to derive and optimize. They also utilize 
simplifying assumptions that can reduce accuracy. Neural 
networks have emerged as an effective alternative for circuit 
modeling because of their greater accuracy and low 
computational cost. However, earlier studies have limited the 
use of neural networks to modeling and analysis and have not 
addressed the use of these models for design synthesis. 

Compact, integrated, and low-cost filter design for optimal 
electrical performance continues to be a challenge for 
microwave designers. Filter design involves several trade-offs 
between various design parameters. There are always two or 
more performance parameters for which improvement in one 
leads to deterioration of the other parameters. For example, 
narrow bandwidth leads to greater pass band insertion loss 
and vice-versa. There is a significant need to determine a 
precise set of layout parameters that meets desired electrical 
specifications (such as operating frequency, bandwidth, 
insertion loss, etc.). The algorithm for synthesizing such a 
design should be highly accurate, but not overly time-
consuming. 

In this paper, we present a neuro-genetic approach for 
design and optimization of millimeter wave low pass and 
bandpass filters. This method has been previously used for 
multilayer inductor and capacitor design [4]. The proposed 
methodology combines the accuracy of neural networks for 
nonlinear modeling with the efficiency of genetic algorithms 
in optimizing the parameter space. The methodology has two 
phases. In the first phase, a neural network model is 
developed from measured data. This model can be used to 
perform sensitivity analysis and obtain response surfaces. In 
the second phase, a genetic algorithm-based scheme is used in 
conjunction with the neural network models for filter design 
and synthesis. This unique coupling enables the identification 
of the correct combination of layout parameters to achieve 
desired electrical specifications. The proposed method also 
has the capability to prioritize multi-parameter optimization to 
suit specific filter design requirements. This capability gives 
additional flexibility to filter designers to accommodate trade-
offs and obtain the best available design.   

2. Neuro-Genetic Design Methodology 

2.1 Neural Network Modeling 
Neural networks have emerged as an attractive technique 

for modeling complex nonlinear relationships [5]. Neural 
networks posses the capability to learn arbitrary mappings 
between noisy sets of input and output parameters. Neural 
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network training is a self-organizing process designed to 
determine an appropriate set of connection weights that allow 
the activation of simple processing units to achieve a desired 
state of activation that mimics the relationship between a 
given set of samples.  

The neural network used for modeling is a multilayer 
perceptron network consisting of three or more layers as 
shown in Figure 1. The x-y-z neural network structure refers 
to number of neurons in the input, hidden and output layers 
respectively. The network is typically trained using the error 
back-propagation (BP) algorithm with a hyperbolic tangent 
activation function [6]. The BP algorithm uses the gradient 
descent technique, which systematically changes the network 
weights by an amount proportional to the partial derivative of 
the accumulated error function, E, with respect to given 
weight. The change in weight is given by 
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where i denotes a node in layer k, j a node in preceding layer 
(k-1), and wijk the weight between these two nodes. The 
constant η (which lies in the range 0-1) is called the learning 
rate. The learning rate determines the speed of convergence 
by regulating the size of the weight change. A larger rate may 
result in the algorithm settling at a local minimum. A smaller 
rate can promote stability in the network, but results in longer 
training time. In order to improve training an additional 
momentum term can be added. The momentum term deters the 
algorithm from settling in local minima and increases the 
speed of convergence. The weight of the back propagation at 
the (n+1) th iteration is then given by: 
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where α (also in the 0-1 range) is the momentum constant. 
The accuracy of the model is evaluated in terms of the 

root-mean-square error (RMSE). The prediction RMSE is 
calculated by obtaining the square root error between the 
neural network’s predicted value and actual value and is 
given by 
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where n is the number of trials and yi is the measured values 
of each response, and ŷi is the neural model output. The 
training error is the RMSE of the data used for network 
training, and the prediction error is the RMSE of the data 
reserved for network testing.  

Network structure and training issues, such as the number 
of layers, number of neurons, the learning rate and the 
momentum constant are determined during the model 
development process. These values are selected such that after 
training, the network model outputs best match the 
experimental data. 

 

Input Layer Output Layer 
Hidden Layer (s) 

 
Figure 1. Multilayer perceptron neural network structure. 

2.2 Genetic Algorithms 
Genetic algorithms are a guided stochastic search 

technique based on mechanics of evolution and natural 
selection [7]. They operate by interactively cycling through 
creation of a “population” of strings, evaluation and selection 
of “most fit” strings, and genetic manipulation to create a new 
population. The strings are formed by encoding each variable 
into a series of binary bits. The new population is created by 
reproduction, crossover, and mutation. Reproduction is 
process by which strings with high fitness values (F) are 
selected based on a probabilistic approach known as elitist 
roulette wheel selection, which is described by:  
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where Kn is weight ascribed to the importance of a given 
response by the user, yd is the target response, and yo is 
response resulting from current set of input parameters. After 
reproduction, crossover is performed by interchanging the 
genetic material of two parents. Finally mutation is 
implemented by randomly changing a fixed number of bits 
every generation based on specified mutation probability. 

2.3 Neuro-Genetic Synthesis 
The neuro-genetic synthesis methodology has two stages. 

In the first stage, a neural network model is developed from 
the measured data. The next stage involves coupling the 
neural network model with genetic search for subsequent 
design synthesis and optimization. The neural network does 
not represent any RF/microwave component well until it is 
trained with experimental data. In stage 1, the range of layout 
parameters is determined within which the desired electrical 
response of the filter exists. After the range of parameters is 
determined, experimental design is used to generate the 
necessary training data using minimum number of 
experimental trials. The data obtained is used to develop 
neural network models that relate the layout parameters and 
electrical response of the filter. The model derived can be 
used to perform sensitivity analysis or obtain response 
surfaces. A flow chart of stage 1 of neuro-genetic design is 
shown in Figure 2. 
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Figure 2. Stage 1: Neural network modeling and analysis. 

The second stage is the synthesis stage, where the desired 
electrical characteristics are provided to a genetic optimizer. 
The optimizer computes the response of this population using 
the neural network model and selects the best (i.e., most fit) 
samples and performs genetic manipulation to obtain results 
from the best samples. The process continues until the 
remaining samples produce the set of layout parameters that 
give (or are closest to) the desired electrical characteristics. 
The proposed method can assign priority to preferred 
performance characteristics (through the Kn’s in (5)). During 
filter design, various tradeoffs between electrical design 
parameters (like bandwidth and insertion loss) can be 
accounted for using priority assignment during genetic 
optimization. Due to the flexibility of the genetic approach, 
the design procedure can be customized to obtain the best 
available design considering manufacturing and other 
physical limitations. The flowchart for stage 2 is shown in 
Figure 3. 
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Figure 3. Stage 2: Neuro-genetic filter synthesis. 

3. Neuro-Genetic Design of mm-Wave Front Ends 
The mm-wave front ends selected for neuro-genetic 

design were low pass and band pass filters. The proposed 
method was used to design mm-wave low pass filters with 
cutoff frequencies of 40 and 60GHz as well as a multilayer 
LTCC band pass filter at 40GHz.  

3.1 Experimental Design and Modeling: Low Pass Filter 

A prototype low pass filter was designed by combining in 
cascade the constant-k, m-derived sharp cutoff, and m-derived 
matching sections [8]. The filter was designed to obtain a cut-
off frequency in the range of 35-70 GHz and an input 
impedance of 50Ω. The filter was realized using the 
microstrip line configuration. The layout schematic and 
parameter ranges are shown in Figure 4 and Table 1, 
respectively. Latin hypercube sampling was used for 
experimental design because of its ability to capture non 
linearity in the design space [9]. The filter was fabricated 

using a 12-metal-layer LTCC process. A microphotograph of 
the fabricated LTCC filter samples is shown in Figure 5. 
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Figure 4. Layout schematic of mm-wave low pass filter. 

Table 1: Range of Layout Parameters for Low Pass Filter 

Layout 
Parameter 

Low 
(µm) 

High 
(µm) 

l1 350 550 
l2 400 600 
l3 450 800 
x1 300 500 
x2 200 400 

 

 
Figure 5. Fabricated samples of mm-wave low pass 

filters. 
 
Two-port electrical measurements were performed on the 

fabricated samples using SOLT calibration and a network 
analyzer. The measured values of insertion loss for the low 
pass filters are shown in Figure 6. The measured data was 
used to obtain neural network models for the cutoff 
frequency, attenuation, and frequency at the first pole. The 
learning rate used was 0.001. Neural network modeling 
results are shown in Table 2. The derived model exhibited a 
prediction error less than 5% for the cutoff frequency and 
frequency at the first attenuation pole. This accuracy is good, 
considering the error involved in measurement and parameter 
extraction at 40-70 GHz. The prediction error for attenuation 
was large, and this was likely due to errors involved in 
measurement of rejection losses of order of –50dB at high 
frequency and calibration errors. 
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Figure 6. Measured insertion loss of low pass filter samples. 

Table 2: Neural Network Modeling of Low Pass Filter 

Prediction Error Filter Parameter NN 
Structure RMSE %RMSE 

Cutoff 
Frequency 

5-7-1 2.7 3.9 

Frequency @ 
attenuation pole 

5-7-1 7.9 4.8 

Rejection @ 
attenuation pole 

5-7-1 25.6 21% 

3.2 Experimental Design and Modeling: Bandpass Filter 

One single mode slotted patch filter with a transverse cut 
on each side was designed and embedded in an LTCC process 
for 38-40GHz applications (such as remote sensing and 
secure communications). The top view of the patch filter 
designed for a 6.5% bandwidth, 39 GHz center frequency, 
and < 3dB insertion loss, is shown in Figure 7. This structure 
was developed from the basic half-wavelength square patch at 
39 GHz by adding a transverse cut (Lcl×Lcw) on each side. 
Transverse cuts contribute to significant miniaturization 
(about 38%) due to the additional inductance effect. The 
desired coupling coefficients are obtained by placing the feed 
lines and the resonator into different vertical metal layers. The 
layout parameter ranges are shown in Table 3. 

 
Figure 7. Layout schematic mm-wave bandpass filter. 

Table 3: Range of Layout Parameters for Bandpass Filter 

Layout 
Parameter 

Low 
(µm) 

High 
(µm) 

Length (L) 930 1100 
Lc1 300 400 
Lcw 90 180 
Lover 50 100 

The fabricated samples (Figure 8) were measured using 
the Agilent 8510C Network Analyzer, Cascade Microtech 
probe station with 250 µm pitch air coplanar probes and a 
standard SOLT calibration method. The experimental samples 
had center frequencies between 35-42 GHz and 3 dB 
bandwidths of 1-4 GHz. The minimum pass band insertion 
loss was 1-2.5 dB. Sample measured results are shown in 
Figure 9. The measured data was used to obtain a neural 
network model (Table 4) for the center frequency, bandwidth, 
and minimum pass band insertion loss.  

 
Figure 8. Top view of a fabricated mm-wave bandpass filter 
with an embedded resonator (not visible) and CPW ports on 
top. 

 

 
Figure 9. Measured return and insertion loss of bandpass 
filter. 

Table 4: Neural Network Modeling of Bandpass Filter 

Prediction Error Bandpass Filter 
Parameter 

NN 
Structure RMSE % RMSE 

Center Frequency 4-5-1 0.56 1.7 
Bandwidth 4-4-1 1.4 4.1 

Min. Insertion Loss 4-5-1 2.6 10.3 

3.3 mm-Wave Filter Synthesis Results 
The neural network models were used to design LTCC 

mm-wave low pass and band pass filters using the neuro-
genetic approach. The genetic algorithm parameters chosen 
for filter synthesis are shown in Table 4. These parameters 
were chosen such that the algorithm converged to the desired 
optimal point with few iterations. Filter synthesis results are 
shown in Table 6. For the low pass filter, the measured results 
obtained from the synthesized filter were close to the targeted 
value for the design at 40 and 60 GHz. The rejection at the 
attenuation pole was not used for synthesis, as it had a very 
large modeling error. With a small number of experimental 
runs (16), a low pass filter was synthesized with precise 
cutoff frequency in the range of 35-65 GHz. 

 However, for the band pass filter, the measured values of 
the synthesized filters were not as close to the targeted values 
as expected. This may indicate that the filter layout range 
should be increased. Furthermore, this was a complicated 
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design with single patch, and the filters did not exhibit very 
good operational characteristics initially. Therefore, the 
neuro-genetic approach was limited in its ability to synthesize 
a filter with a narrow bandwidth of 1.2GHz and insertion loss 
of 2dB with a single patch. A possible method to overcome 
this limitation would be to widen the layout range and add 
more patches so that a larger design space could be explored. 

Table 5: Genetic Algorithm Parameters 

Genetic Algorithm Parameters Value 
Crossover Probability 0.65 
Mutation Probability 0.01 

Population Size 100 
Chromosome Length  100 

Table 5: Mm-Wave Filter Synthesis Results 

Mm-wave low pass filter synthesis 
 Cutoff 

Freq. GHz) 
Freq. @ atten. 
pole  (GHz) 

l1,l2,l3,x1,x2 

Weight 100 100  
Target 40 45  

1 NN-GA 39.70 47.5 417, 760, 600, 
375, 380 

Target 60 65  
2 NN-GA 59 66 395, 500, 505, 

300, 220 
Mm-wave bandpass filter synthesis 

 Center 
Freq. 
(GHz) 

3-dB 
Bandwidth 

(GHz) 

Inser. 
Loss 
(dB) 

Length, Lc1, 
Lcw, Lover 

Weight 100 10 10  
Target 40 1.2 2  

1 NN-GA 41.2 3.2 2.88 935, 315, 
160, 150 

Conclusions 
A novel neuro-genetic methodology has been used to 

synthesize LTCC mm-wave filters. This is the first reported 
method where measured results were used for synthesis. This 
method results in more realistic and precise design. The 
devices obtained from the layout parameters predicted by this 
method performed within 5% of the desired targets. This 
method implements priority to account for design tradeoffs. 
The method also possesses the potential to be used for 
designing other passive circuits like baluns, couplers, and 
antennas, as well as active circuits. 
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