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Abstract  — In this paper a method is presented that allows 

the modeling of subcell lumped elements in Haar based 
multiresolution time-domain (MRTD).  The method is 
applied through the use of a reconstruction/discrete wavelet 
transform algorithm that is integrated into the MRTD 
update scheme.  A derivation of the MRTD method is 
presented for generic wavelet bases to demonstrate the 
application of the technique and suggest methods for using 
other wavelet bases.  The Haar subcell technique is further 
presented as a bridge between point based updates (FDTD) 
and wavelet based multiresolution schemes (MRTD).  
Extensions of this technique include other point based 
algorithm modifications such as subcell PML and wire 
modeling. 

Index Terms  —  MRTD, FDTD, multiresolution, wavelet, 
subcell, composite cell 

I. INTRODUCTION 

The multiresolution time-domain (MRTD) method [1] 
is a wavelet based technique that has the chief advantages 
of an inherent time- and space- adaptive grid and lower 
dispersion than methods of similar complexity. MRTD 
schemes have been developed for several wavelet bases, 
and each method has its own unique strengths.  One of the 
main tradeoffs of wavelet bases is between algorithmic 
complexity and efficiency.  Wavelet schemes, such as 
Battle-Lemarie [1] have been shown to require very few 
coefficients per wavelength, at the cost of a large stencil 
size (the number of basis functions that overlap).  At the 
opposite end of this spectrum is Haar [2] wavelets, which 
have no overlap, but which also has dispersion properties 
equivalent to FDTD [3].  Another wavelet scheme which 
has been shown to have improved dispersion performance 
compared to FDTD, with a smaller stencil than Battle-
Lemarie, is biorthogonal wavelets [4]. 

Regardless of the scheme used, one of the hallmark 
features of the MRTD scheme is a “cell size” that is larger 
than that of FDTD.  In this document, the cell size is 
referred to as the domain of the scaling function.  MRTD 
is an explicit time-domain technique, and as such 
boundary conditions of usually applied directly after field 
updates.  A perfect electrical conductor (PEC) or perfect 
magnetic conductor (PMC) boundary condition, for 
example can be applied by setting the fields tangential to 

their locations to zero.  As PEC features are usually 
significantly smaller than the maximum grid size, there is 
a disparity between the advantages of the method and the 
reality of its application. 

One of the difficulties of applying the MRTD method is 
simulating fine features.  Complex dielectric structures 
can be modeled through the discretization of the 
relationship between the electric field and electric flux 
density [1].  This relationship cannot be exploited, 
however, to implement hard boundary conditions, such as 
PECs.  A technique has been presented that allows hard 
boundary conditions to be applied for Haar methods 
through the use of a reconstruction/discrete wavelet 
transform algorithm [5].  In this paper it is shown that this 
method provides a bridge between a pointwise update 
scheme, such as in FDTD, and the wavelet update scheme 
of MRTD.  It is demonstrated  in terms of general wavelet 
expansions that this technique can be expressed as an 
explicit application of the boundary condition on the 
wavelet field expansion.  As an example of how this 
technique can be applied, it is extended to treat lumped 
elements. 

II. MRTD BACKGROUND 

While MRTD is a general term referring to the 
application of wavelets to the discretization of Maxwell’s 
equations in the time-domain, the procedure for deriving 
the field update scheme is independent of the wavelet 
basis chosen.  As such, the general derivation of MRTD 
methods is presented here.  This paper presents a specific 
method that can be applied using Haar wavelets, but this 
general discretization is necessary to illustrate both how 
the method can be applied and what is unique in Haar 
wavelet discretizations that allows a pointwise application 
of specialized elements. 

To derive an MRTD update scheme, the fields must 
first be expanded in terms of wavelets and scaling 
functions.  Like the FDTD method, the electric and 
magnetic fields are offset in space and time.  As a fixed 
time step is used, the time offset is ∆t/2, as in FDTD, and 
the space offset will be, for now, left as s.  For example, 
the expansion of the Ex component, in two spatial 



dimensions (for TEz mode simulations) in terms of general 
scaling functions, φ, and wavelets, ψ, is 
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The maximum level of wavelet resolution is rmax.  It is 
convienient to use a compact notation of the field 
components  [2] in the form of 
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that permits the update schemes to be represented as 
matrix equations. 

The next step in the derivation of the update scheme is 
to insert these expressions into Maxwell’s curl equations, 
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∂
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t

 (3) 
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Then the method of moments is applied.  The inner 
product with the time pulse hn(t) is taken so that only one 
time step of the space derivative terms, and two of the 
time derivative terms remain in the equation.  Then, the 
inner product with all space scaling functions and 
wavelets are taken.  The locations of the scaling and 
wavelet functions are chosen such that the field under the 
time derivative is localized.  The result is an explicit 
update equation for each wavelet/scaling component in 
terms of the surrounding fields.  The update equation for 
the Ex field, in a homogeneous media takes the form 
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It is important to note that (5) is a matrix equation.  In this 
equation, m is the stencil size, determined by the overlap 
of the scaling and wavelet functions with neighboring 
scaling/wavelet functions.  Haar-MRTD updates depend 
only on the fields at the same location, and thus m=0.  
Battle-Lemarie wavelets, on the other hand, are entire 

domain, although they are usually truncated with a stencil 
size of around 9. 

In (5), E and H are column vectors, with )1(2 max2 +r  
elements (the number of scaling and wavelet coefficients.  
U is a square matrix, )1(2 max2 +r x )1(2 max2 +r  in size.  The 
elements of U are the coefficients of the inner products 
calculated using the method of moments. The values in 
the U matrix are the results of the inner products 
calculated with the method of moments. 

The time step used in MRTD is dependent on the 
wavelet basis used and as such will not be covered here.  
The discussion presented in this paper is dependent on the 
spatial discretization, and as such the time step is not 
directly relevant.  The other important parameter that has 
not been presented is the spatial offset between the 
electric and magnetic field.  It has been shown [2,6], that 
the offset 2max2/1 +r  leads to the best dispersion relationship.  
In the Haar case, this yields an equivalent dispersion as 
the FDTD method. 

Of course, the chief advantage of the MRTD method is 
the time- and space- adaptive grid.  This can be applied to 
the method that has been presented by adding and 
removing wavelet coefficients.  An optimal method for 
varying wavelet resolution has not been presented, 
although existing methods use both a relative and absolute 
threshold.  By periodically checking whether wavelets are 
required, the resolution can be varied with time. 

Due to the fact that the resolution varies with time it is 
difficult to specify the offset based on the maximum 
resolution.  Instead, the offset must be set on the 
characteristics of the initial grid.  Increasing the resolution 
at this point will allow fine features and complex fields to 
be modeled, but with more dispersion than a grid 
formulated with the offset given above. 

III. MRTD SUBCELL MODELING 

The update presented in (5) is for the case of a 
homogeneous medium.  In the more general case, (5) is 
not a direct update of E fields from H fields, but rather D 
from H.  Methods have been presented [1] that then allow 
E components to be determined from the D components.  
However, the method provides no means for the 
simulation of hard boundaries.  These conditions must be 
explicitly placed on the grid.  In [5] a method is presented 
that allows the modeling of PECs at the equivalent grid 
point level in Haar-MRTD. 

In order to represent PEC elements in the MRTD 
simulator, the electric fields that are tangential to PEC 
boundaries must be zeroed.  In [5] this is applied by first 
reconstructing the Haar-MRTD electric fields, utilizing. 

)1( max2 +rD  (where D is the dimensionality of the simulator) 



equivalent grid points (areas with constant field value) per 
cell.  The concept of equivalent grid points was first 
presented in [6].  This is the same number of points as 
scaling/wavelet coefficients, and, due to the orthogonality 
of the basis functions, they are independent.  If the 
scaling/wavelet coefficients are arranged as in (2), a 
reconstruction matrix can be used to convert the 
scaling/wavelet coefficients to field values.  The inverse 
of that matrix converts field values at equivalent grid 
points to MRTD coefficients, effectively performing the 
DWT. 

In the general MRTD scheme, reconstruction and DWT 
can be viewed as operators instead of matrices.  In this 
case, a similar condition could be applied by first 
reconstructing the wavelet values, zeroing fields in the 
appropriate areas, and then performing a DWT to obtain 
the MRTD coefficients.  Of course, because a finite 
number of wavelet coefficients are used, it may not be 
possible to represent a given structure accurately with this 
method. 

The technique presented in [5] can be generalized to 
allow pointwise effects to be applied at the MRTD 
equivalent grid points.  The Haar-MRTD update equation, 
(shown here for the Ex field), 
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can be converted to a pointwise form by multiplying with 
the reconstruction matrix, R, 
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if, 

 1RURU −='  (8) 

At this point, the values represented by x
ji,nER  and 

z
ji,1n HR −
 represent the fields at equivalent grid points.  An 

effect that affects a single or a small number of subcell 
grid points can be applied at this point.  To multiply 
individual grid points by a discrete value, each field vector 
can be multiplied by a pointwise update matrix, G, to 
yield 
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In the case with no pointwise effects, G is simply the 
identity matrix.  In any scheme, only the diagonal 
elements of G are nonzero.  To apply a PEC, the diagonal 
element in the row corresponding to the zeroed grid point 

is set to zero.  The scheme can then be converted back to 
MRTD updates through multiplication with R-1, giving 
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The matrices in (10) can be multiplied together, 

 RGURU '1G −=  (11) 

and an update equation resembling (6) results 
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A. Lumped Element Modeling 

Using the procedure defined above, a number of pointwise 
effects can be applied to individual equivalent grid points 
in the MRTD method.  For example, an equation for 
modeling z-directed resistors in a 3D FDTD scheme is [7] 
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This expression can be easily modified for x and y 
oriented resistors.  A resistor can be applied at an 
individual grid point in the MRTD scheme by setting the 
appropriate row of the G matrix to the multiplier in (13).  
Similar expressions for inductors, capacitors, and diodes 
[7] can be applied as well. 

Similar features that can be modeled with this method 
are thin wires [8], narrow slots [9], and many other 
techniques.  Another important use of this method is that 
the perfectly matched layer [11] can be implemented such 
that that the material properties vary by equivalent grid 
point, and even fill only part of a cell.  Thus, if a cell with 
16 equivalent grid points per direction were used, it could 
have only 10 cells of PML.  Most techniques that can be 
applied to the FDTD method can be extended to MRTD in 
this manner. 

IV. EXAMPLE 

A brief example is presented to validate the technique.  
In this example, an air-filled parallel plate waveguide 
(separation 30mm) is simulated in 2D (TEz mode).  The 
waveguide is terminated with a 50Ω resistor.  The resistor 
does not match the waveguide, and thus reflection occurs.  
The time domain-results for MRTD rmax=2 and FDTD are 
presented in Fig. 1 and they are identical.  The parallel 



plate waveguide is only one half of the MRTD cell in 
width (equivalent to 4 FDTD cells), and the resistors span 
4 equivalent grid points. 

 
Fig. 1. Comparison of MRTD and FDTD simulation of 
parallel plate waveguide 
 

In the final version of this paper, results from the 
simulations of periodically loaded transmission line with 
effective negative refractive index and negative group velocity a 
will be presented.  Currently, there is much research 
interest in loaded transmission lines for meta-material 
based applications [11].  The fine details and large number 
of lumped components required for the simulation of these 
devices makes their modeling difficult and time-
consuming.  Using the method presented in this paper, a 
structure consisting of repeated elements of the unit-cell 
topology in Fig. 2. can be efficiently modeled.  The 
variable grid and fine subcell features of the method are 
well suited to this problem and could lead to a much faster 
modeling and understanding of the physics of these 
structures.. 

 
Fig. 2. Unit cell of a loaded microstrip line for meta-material 
applications 

V. CONCLUSION 

In this paper a method is presented that allows effects at 
the subcell level to be applied in Haar-MRTD.  It is 
shown, through a general derivation of the MRTD method 
for any wavelet basis, that the technique comes from the 
use of reconstruction/decomposition operators.  In the 
case of a general wavelet scheme it is necessary to 
determine what features can be accurately represented at 
the chosen resolution level when applying the technique.  
In the special case of Haar-MRTD, the algorithm 
effectively combines the pointwise nature of FDTD with 
the wavelet multiresolution nature of MRTD.  This allows 

MRTD to use all of the extensions that have been for 
developed for MRTD while still taking advantage of the 
time- and space-adaptive resolution.  Some of the 
techniques that can be modeled using this method are 
lumped elements, equivalent circuits, thin wires, narrow 
gaps, and the perfectly matched layer and can be used for 
the optimization of novel structures, such as 
metamaterials. 
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