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Abstract  —  This paper presents a novel method of 

coupling a quasistatic field solver with the finite-difference 
time-domain technique for the more efficient modeling of 
multilayer packaging structures including metal and 
dielectric loss effects.  Lossy metal characteristics are first 
simulated with a dense quasistatic or a dense 2.5D-FDTD 
grid and the resulting field correction factors are then used 
to enhance the accuracy of a much coarser 3D FDTD mesh. 

I. INTRODUCTION 

Significant attention is currently being devoted to the 
accurate modeling of packaged RF modules.  Many of 
these structures involve multilayer dielectrics 
interspersed with layers of metallization [1].  These 
metals can be modeled as perfect electronic conductors, 
but for a large portion of RF structures, the finite nature 
of the metal thickness and conductivity play a significant 
role in device performance.  Also, irregularities and 
structure details used in these geometries, including vias 
and wire bond connections, may be of a much smaller 
geometrical scale in comparison to the rest of the 
topologies. 

The finite-difference time-domain (FDTD) technique 
[2,3] has long been employed due to its versatility in 
simulating high-frequency structures.  However, as 
device features become smaller and integration increases, 
the computational load of a simulator experiences a 
corresponding increase.  Since the Yee cell size is 
determined by the smallest feature of the simulation 
structure, and the number of cells is related to the total 
size of the structure, the computational domain quickly 
grows large.  With the addition of non-ideal material 
parameters and with the incorporation of finite thickness 
and conductivity of metallization, the grid can become 
very large while the size of the time-step decreases, 
increasing the total simulation time.  Static solutions have 
previously been considered as a method of reducing the 
computational overhead required for modeling 
discontinuous structures in FDTD [4,5], and for 
including imperfect material characteristics in the finite-
difference method [6]. 

This paper presents the formulation of a hybrid FDTD 
method integrating a quasistatic field solver.  This solver 
is first used to solve for static electric and quasistatic 
magnetic fields as highly accurate integral 
approximations.  The output from the quasistatic solver 
can be used to determine the areas of highest field 
variation, and correction factors can be derived to 
account for inaccuracies caused by the use of a coarser 

dynamic (FDTD) grid.  The static grid resolution is 
varied to determine what effect differences in the grids 
have on the accuracy of the simulations.  Also used is a 
technique called “windowing”, where the correction 
factors are thresholded and applied only in specific 
regions of the simulated structures, maintaining similar 
accuracy while significantly reducing computational 
requirements. 

II. HYBRID METHOD OVERVIEW 

The combination of the quasistatic solver and the 
FDTD method is an attempt to resolve some of the 
difficulties associated with modeling highly conductive 
thin materials in the time domain.  Researchers often rely 
on heuristic approaches to generate the mesh for full-
wave simulation, and this can result in inaccuracies in 
areas of large field variation [7].  The quasistatic solver is 
used in conjunction with a variable-gridded FDTD mesh 
to reduce errors in mesh size near structure 
discontinuities. The main advantage of the quasistatic 
solver is that, since it has no time-marching component, 
it does not take long to process, compared to a dynamic 
simulation of comparable resolution. In addition, it can 
be used as a preprocessing step that can optimize the grid 
size of the full-wave simulation. 

For the integration of the quasistatic solver with the 
dynamic FDTD solver, correction factors for the 
electromagnetic fields in areas of high field variation are 
calculated.  They improve the accuracy of the field 
solutions over the coarser dynamic grid through the 
solution of the integral forms of Ampere's and Faraday's 
laws, shown in (1) and (2), over a fine quasistatic grid.   
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The equations needed for the calculation of the 
correction factors are given in (3) and (4), where  
represents the line integral correction factor, ACF  
represents the surface integral correction factor, and the 
∆-terms represent the sizes of the FDTD coarse cells 
around which the integrals are discretized using the 
quasistatic values.  The dl, dx, and dy variables of 
integration are the quasistatic grid sizes, which are much 
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smaller than the coarser FDTD cells.  The F components 
in the numerators of the expressions are the field values 
derived from the quasistatic solver over the fine grid, and 
the F component in the denominator is the field value 
derived from the quasistatic solver in the same location 
as the field position on the FDTD coarse grid.  The error 
can thus be reduced by using a very large number of 
quasistatic, fine-grid cells per dynamic, coarse-grid cells. 
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Figure 1 shows a representation of the calculation for 
the surface integral correction factors.  The coarse FDTD 
grid is displayed in the bolded dashed lines on the grid, 
and the fine quasistatic grid is shown by the fine black 
solid lines.  In this case, the two grids are shown as 
uniform, with respect to both themselves and each other; 
however, this is not a requirement.  The technique can be 
applied using variable gridding for both the fine and 
coarse grids.  The dot at the center of the coarse FDTD 
cell denotes the location of the electromagnetic field used 
to calculate the dynamic cell field integral solution for 
use in (3) and (4). 

 
Fig. 1 Grid showing relationship of dynamic and static cells. 

The surface integral is calculated to a very high degree 
of accuracy using the quasistatic solver over the fine grid, 
and, as shown in (4), this expression is used in the 
correction factor calculation.  The coarse grid field 
integral approximation is determined by taking the 
quasistatic field value at the center of the dynamic grid 
cell and multiplying it by the area of the FDTD cell, or 
by the length of the cell, for line integral correction 
factors.  These calculations are carried out over the entire 
grid, and are performed before the dynamic simulation, 
thus avoiding additional computational overhead.  In 

areas of large field variation, the magnitude of the 
correction factors can be quite large.   

Another method of deriving the correction factors for 
use in the FDTD update equations is by means of a very 
high resolution 2.5D FDTD simulation.  This is the 
method that will be shown in this paper, as a proof-of-
concept.  The quasistatic technique and the application of 
the correction factors work in exactly the same way, but 
the application is more limited to a narrow frequency 
range.   

Following the derivation of the FDTD update 
equations from the integral forms of Faraday’s and 
Ampere’s laws [2] and incorporating the correction 
factor terms in the formulation, the modified update 
expressions for Hx and Ex as shown in (5) and (6) are 
derived (conductivity terms and nonessential subscripts 
are omitted for simplicity): 
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The relative orientations of the field components and 
the approximations of the integral equations are shown in 
Figure 2, which displays the contours and surfaces used 
in the solution of Maxwell’s curl equations. 

 
Figure 2:  Faraday contour showing relation of fields for (6). 
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The contour integral of the electric field is related to the 
surface integral of the magnetic field by Faraday's law.  
In this figure, the solved-for field is Hx, related to the 
loop including Ey and Ez.  Equation (6) can be derived in 
a similar way. 

In applying the correction factors derived from the 
quasistatic solver to the FDTD update equations, the 
stability of the hybrid algorithm is affected.  A stability 
analysis gives a time step for the hybrid method which 
incorporates the effects of the correction factors.  The 
calculation for the maximum time step is shown in (7), 
where dx, dy, and dz are the minimum sizes of the space 
discretization in each direction, and the CFl|max are the 
maximum line integral correction factors over the entire 
grid derived from the quasistatic field solutions.   

III. PRELIMINARY RESULTS 

The above-described technique was benchmarked for a 
simple microstrip structure with thin finite-conductivity 
metal strips.  Some preliminary results derived from 
these simulations are described in this section, including 
some comparisons of attenuation constants and 
characteristic impedance for the benchmarking structure, 
as well as evaluations of different correction factor 
“window” sizes. 

Figure 3 illustrates the areas where the correction 
factors are significantly applicable (the “window” region 
mentioned previously) and shows the basic geometry for 
the test structure, a microstrip line on polyimide (εr=3.2) 
with a gold metallization (σ=3x107 S/m).  The substrate 
thickness is 20 µm, with a strip height of 5 µm. Initially, 
the quasistatic solver was used for the whole structure 
and the dashed area was derived after thresholding the 
correction factor values and neglecting those in areas of 
low field variation. 

 
Fig. 3 Test structure geometry with indicated area of 
correction factor application 

The test structure was first simulated using a very high 
resolution FDTD grid, for the comparison (below) with 
the quasistatic results.  The high resolution grid size is 94 
by 95 by 200 cells, with a minimum cell size of 200 nm, 
and uses 10 cells of PML absorber in all directions.  It 
uses 25 cells for the 5µm strip thickness, and 20 cells for 
the 42 µm strip width. This number of cells is not, by 
itself, an extremely large load, but, due to the small size 

of the cells, the time step is also very small.  This results 
in a very large number of time steps needed for 
convergence.  In this case, over 400,000 time steps were 
needed, using an in-house developed parallel FDTD code 
on a 14-processor workstation cluster.  The simulation 
time was approximately a day and a half.   

The same structure was then modeled using the hybrid 
FDTD method and employing correction factors.  
Numerical simulations demonstrated that static cell sizes 
approximately half of a skin depth at the highest 
frequency of interest result in a calculation of the 
attenuation with acceptable accuracy.  For practical 
cases, we apply this as a static grid resolution 10 times 
denser than the dynamic 3D FDTD grid with reasonable 
cell size, resulting in an approximate execution time 
economy of 1/6 to 1/7. 

Figure 4 shows a comparison of simulation results 
using different window sizes, where the “window” is a 
region around the strip where the correction factors are 
expected to be significant, and are neglected outside that 
region (i.e., set equal to 1).  In this case, the static mesh is 
approximately half of a skin depth for the strip 
metallization, which is a static cell resolution of 10x the 
dynamic cell resolution. It has to be noted that a window 
around the strip extended to 2 strip widths left and right 
is sufficient for the accurate modeling, while decreasing 
the number of cells that have to be treated with the 
correction factors by a factor 3-5.  (The ‘strip width’ term 
refers to the width of the window on either side of the 
conducting strip.)  The vertical window dimension is 
expanded along with the horizontal, approximately cell-
for-cell. 

 
Fig. 4:  Attenuation for different window sizes. 



IV. CONCLUSION 

In this paper, a method of coupling a quasistatic 
simulator with a conventional FDTD code for the 
purpose of improving accuracy while reducing 
simulation time through "subgridding" is presented.  This 
is accomplished by the use of correction factors in the 
FDTD equations that can be derived from the quasistatic 
analysis of RF structures over a much finer grid with a 
cell size less than half of the skin depth in the metallized 
region.  This technique can also be used to eliminate 
"guesswork" in meshing by determining areas of highest 
field variation from the magnitudes of the correction 
factors, something very important in the simulation of 
modern complex integrated RF modules, multilayer 3D 
RF front-ends or smart antenna arrays that include lossy 
dielectric and metal layers. A further reduction in the 
computational requirements can be achieved through the 
use of “windowing” techniques. 
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