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Abstract —  This paper examines the implications of
decoupling the FDTD grids between and FDTD Electromagnetic
(FDTD-EM) and an FDTD Hydrodynamic semiconductor
simulator. Excitation methods and responses are examined to
determine feasibility for decoupling the space and time grids for
significant computational savings. Additionally, a new fully-
explicit leap-frog discretization of the Hydrodynamic model is is
benchmarked with respect to several well known discretization
methods.

Index Terms — FDTD  methods, Time-Domain,
Hydrodynamics, Boltzmann equation, electromagnetic coupling,
Magnetohydrodynamics.

I. INTRODUCTION

The advent of nanostructures and the integration of exotic
solid state devices in state-of-the-art RF, microwave and
optoelectronic devices have dictated the integration of
electromagnetic solvers with solid-state simulators. Despite
the numerous efforts in the past, there are still issues
remaining with the numerical accuracy and stability of the
coupled schemes. The dominant challenge is the fact that the
time and space gridding requirements usually differ by several
orders of magnitude for the two systems. This paper will
demonstrate an effective method for decoupling the time and
space discretization of the two systems. The hydrodynamic
simulator was chosen as it provides a wider set of submicron
or nano-scale effects that can be included in the simulation
gaining a more accurate result of the device or circuit
characteristics in-situ.

A. Model Description

The hydrodynamic model (HDM) approximates the
semiconductor as a highly charged gas or plasma flowing
through the semiconductor lattice. The model is typically used
when a Monte-Carlo approximation is not practical, such as in
time-domain simulations. The original mathematical model
was developed by Blotekjaer [1] for two-valley GaAs
semiconductors and was extended to single-band silicon
semiconductors later [2].

The mathematical model is derived by taking the first
several moments of the Boltzmann Transport Equation (BTE)
producing equations (1) - (3) [3]. The collision terms in each
of these equations describe the average carrier-carrier, carrier-
lattice interaction. In a multi-band device the collision term in
the conservation of mass would allow for the loss or gain of
mass due to the carriers' transition from one energy band to
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another, re-combination, and generation effects. The collision
terms in equations (2), (3) describe the average momentum or
energy lost or gained via interactions with the lattice or carrier
interaction [4]. The process of taking the mathematical
moments of the BTE always leaves undefined variables that
need to be approximated. As a result of the calculation of the
moments of the BTE, two variables are left undefined: Heat
flux and Electrostatic forces. The Heat flux is approximated
using Fourier's Law (4) and Wiedemann-Franz Law (5) to
express the internal thermal conductivity [2,3]. Poisson's
Equation (6) is used to approximate the internal electrostatic
effects of the plasma. With equations (1-6) the hydrodynamic
(HD) model is fully defined and mathematically self-
consistent and ready for discretization and simulation prior to
integration into an FDTD-EM solver.
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B. Previous Efforts

The HDM model itself is non-trivial to discretize and
achieve stable, consistent and convergent results. Previous
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approaches to discretize the highly coupled non-linear model
shown in (1)-(6) were typically based on the staggering of the
scalars and vector parameters at full and half nodal points or
setting all variables at the nodal points at the same time step.
This approximation is based on the assumption the variables
are unable to be decoupled in time causing the model to be 2™
order accurate in space, but only 1% order accurate in time.
This discretization fails to provide a numerically stable model.
To correct for this problem advanced discretization techniques
are typically used in time. As examples, Tomizawa used a
Crank-Nicolson semi-implicit method [3], Aste & Vahldieck
used a weighted upwind scheme [5], and El-Ghazaly used a
hybrid method that included both a standard upwind method
and a Lax-Wendroff method [2].

. NEw HDM METHODOLOGY

The novel method shown here extends the basic tenets of
Yee’s Leapfrog method in space and time Maxwell’s Curl
equation discretization to the HDM [6,7]. If one accepts that
the equations can be sufficiently decoupled to stagger the
gridding in space, the staggering of these variables in time is
the next natural extension. The developed simulator staggers
the scalar variables on the full nodal points and the vector
variables on the half nodal points of the HDM grid in time and
space as seen in Fig. 1.
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Fig. 1.  Staggered Gridding technique showing vector and scalar
offsets in time and space.

II1. MODEL COMPARISON

Typically any new HD model is tested against the well
publicized n-i-n diode case. Several of the previously
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discussed methods were implemented and compared by the
author.

Three separate models were implemented. A reproduction
of the time-domain discretization as described by Tomizawa
was used for the Lax-Wendrofft The asymmetric Upwind
scheme described by Aste & Valhdieck. And the Leap Frog
discretization described in the previous section. All models
used the same physical constants, and included El-Ghazaly’s
effective mass approximation [2].

Evaluating a model for integration into the FDTD-EM
lattice requires the model to be stable, convergent, and
consistent with physics. At a minimum the models need to
produce valid results for zero bias, DC ramp to some
reasonable DC bias voltage, and for the DC bias plus a sine
excitation of reasonable amplitude.

A. Zero DC Bias Steady State

All hydrodynamic models provided reasonable results at the
input and output ports of the ballistic diode for zero DC bias.
The Upwind model has excessive carrier velocities at the
transitions regions between the highly doped areas and the
non-doped transition regions; however, when a DC bias was
applied the results improve.

B. Ramp Excitation to 1VDC Steady State

The next test excited each of the implemented discretization
methods for the same n-i-n diode with a basic DC ramp from
0V steady state to 1V. Ramp times were varied from 100ns to
10ps. Fig 2 shows the results for the fastest excitation rate
each model could support for stability up to some reasonable
time and acceptable convergence.
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Fig.2. Maximum stable ramp excitations showing the maximum

ramp rates the produced reasonably stable or convergent solutions.

The results of this test provide unique insight into each
model’s behavior. The Lax-Wendroff discretization provides
stable and convergent results provided the ramp rate is either
slow enough or the steady state time is limited. Fig 3 shows
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good results. However, Fig 4 shows the effects of allowing for
longer execution time. The model begins to oscillate in a
divergent manner.

The Upwind method shows other unique results. Upon
closer examination of Fig 3, the results show the non-physical
effects of using an asymmetric upwind method. The device
becomes a perfect current sink at both the input and output
ports as the carrier velocity is positive at one end and negative
at the other end. The result was convergent even for excessive
simulation time (large number of time-steps). Fig 4 shows that
increasing the Zero DC Bias time and slowing the ramp rate
valid results can be obtained for Upwind model; however, the

Lax-Wendroff method’s tendency to oscillate and
subsequently diverge.
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Fig. 3. Steady-state Velocity profile of n-i-n diode models
showing the non-physical convergent results for the Upwind method
when the ramp excitation rate is too steep.
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Fig. 4. Steady-state Velocity profile of n-i-n diode for a much
slower ramp excitation and much longer execution time. The Lax-
Wendroff method tends to oscillate when sufficient execution time
has elapsed.
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C. AC Excitation Plus 1V DC-Bias

The unstable Lax-Wendroff method results were omitted as
the results were omitted due to the fact that this technique is
not convergent. A 20GHz sine wave was used to validate and
compare the initial results the excitation was a piecewise
linear approximation similar results and the DC excitation to
the ramp in which the excitation step size was dependent upon
the HDM timestep, effectively making the excitation quite
smooth. Both models show similar and good results the
resultant curves are shown in Fig 5 with the results for the
method for coupling the system.

IV. COUPLING METHODOLOGY

El-Ghazaly’s approach for coupling the systems included a
unified grid in time and space between the two models. The
two models CFL conditions have disparate space and time
stepping requirements as shown in Table 1, with a2 maximum
frequency of interest in the FDTD-EM simulator of 100 GHz.
Eliminating the unified grid requirement significantly reduces
the computational requirements of an integrated simulator.

TABLE ]
SPACE AND TIME STEP DISPARITY

Space Step (m) Time Step(s)
FDTD-EM 0.150e-3 5.0e-13
FDTD-HDM 4.08e-10 4.08¢-17

Decoupling the time and space grids requires an effective
method of exchanging energy between the models at the
HDM input and output ports. Picket-May [8] described a
straightforward method for introducing Thevenin and Norton
equivalent circuits into the FDTD-EM lattice and SPICE
models. The previous section demonstrated the stability of the
HD models under test to a very smooth excitation with a-
priori knowledge of the excitation in a Thevenin circuit
equivalent. To evaluate coupling methodologies, the AC
excitation (Smooth-HDM) used in the previous section will be
discretized in a stepwise (Step-EMS) and piecewise linear
(Linear-EMS) approximation with a time step for an FDTD-
EM with a maximum frequency of 100 GHz.

V. RESULTS

Fig 5 shows the current density response of the HDM
models to the excitation. Both models under investigation
provide similar results that are expected and consistent with
previous published results [2,3,5] and theory; thereby,
validating the new discretization method.

The models were excited with three approximations of the
piecewise continuous signal. The best approximation was the
Smooth signal that is considered the reference as the piecewise
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approximation is based on the HDM time step. The results are
shown in red and both models have smooth and valid results.
The next best approximation is the piecewise linear
approximation. This method, while it is slightly sensitive to
the relative quick change in slope of the excitation, has
acceptable results that are consistent with the reference
results. Applying a single-step excitation voltage to the HDM
yields unacceptable oscillations in comparison to the reference
solutions.
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Fig. 5. Current density response to the reference excitation, a

piecewise linear approximation and a stepwise linear approximation.
The piecewise linear approximation and the reference excitation are
similar; however the stepwise approximation shows significant
overestimation in the change induced by the excitation.

VI. CONCLUSION

A novel method for coupling a FDTD-EM and FDTD-
HDM models has been presented removing the previous
requirement for a unified spatial and temporal grid between
the models. Decoupling the grids leads to significant
computational savings. For practical RF devices (<200 GHz)
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the computational savings is approximately 10 orders of
magnitude per FDTD-EM cell per FDTD-EM time step as the
HDM can be typically embedded in a single FDTD-EM cell.
This reduces each of the models to their respective CFL
conditions instead of imposing the smallest CFL condition on
both models.

Coupling the energy between the models can be easily
implemented by using Norton or Thevenin equivalent circuits
if a piecewise linear approximation is used to excite the HDM
model embedded in the FDTD-EM lattice.
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