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Abstract — This work describes a novel method based on
a machine learning (ML) approach for highly accurate and
robust identification of chipless RFID applications in realistic
environments. For this purpose, effective transponder reading
is achieved not only for a wide variety of ranges and contexts
but also for different commercial objects attached to the chipless
RFID tag, while providing tag-ID detection accuracy of up to
98.5%. A UWB transmitting tag antenna, four tags encoding
the four 2-bit IDs, and a UWB receiving tag antenna were
inkjet-printed onto flexible low-cost substrates and interrogated
without cross-talk or clutter interference de-embedding at ranges
from 2 to 50 cm, with different objects attached to the tag
(non-conductive, aluminum can, and plastic bottle filled with
water), for both configurations with and without the presence of
scattering objects in the vicinity of the tags and reader. Finally,
a Support Vector Machine (SVM) using the information of the
measured transmission coefficients (S21) outperforms the other
methods displaying reading accuracies 98.5%.

Keywords — chipless RFID, classification, inkjet printed tags,
Internet of things, machine learning, support vector machine.

I. INTRODUCTION

RFID is an emerging wireless technology for capturing
data from tagged objects using HF, VHF, and RF waves
automatically, unlike barcodes that require a human operator
for interrogation [1]. The design and fabrication of ASICs
needed for RFID are the major component of their cost,
which is the main challenge to their adoption. To address
this challenge, a printable chipless RFID tag [2], which uses
materials and configurations that reflect a portion of the
reader’s signal back, and featuring a unique return signal
that can be used as an identifier, was developed by using
low-cost conductive inks. However, these types of tags have
short reading ranges and are sensitive to interference, such as
material contents of the tagged objects. Especially, cross-talk
between reader antennas and environmental clutter interference
can generically be de-embedded but this approach cannot
account for large contextual changes in the vicinity of the
tag and reader. A depolarizing chipless RFID tag [3] and
a cross-polar orientation insensitive chipless RFID tag [4]
were proposed to ease the detection of items in realistic
environments such as tagging objects which contain high
reflective and high absorptive materials. However, these need
specialized tag designs and additional calibrations due to the
limited reading range. In this paper, the first ML application for
the enhanced accuracy with robust detection of chipless RFIDs

regardless of the wide variety of the ranges and contexts, the
tag’s types and the materials attached to the tag, is proposed.

II. CHIPLESS RFID SYSTEM CHARACTERIZATION

A. Chipless RFID Tag design

Four proof-of-concept chipless RFID topologies with
two T-shaped resonant elements encoding all possible 2-bit
combinations were used, and the overall geometrical design
for a T-shaped resonator is same used in [5]. Each vertical
microstrip line represents a different stop-band resonance at
3.45 and 5.7 GHz, which can be used as IDs acting for logic
‘00’, ‘01’, ‘10’ and ‘11’. To verify the detuning of the tag’s
resonator when changing the material to be attached, S21

values of all four tags were first simulated with a non-reflective
object and highly reflective objects (aluminum can, plastic
bottle filled with water). HFSS simulation shows that the
tags get detuned when they are attached to highly reflective
objects as shown in Fig. 1. Without manual analysis of the
effect of the microwave propagation on different material
on the tag response, the superiority of the ML approach
making detection of tag ID placed on conductive objects is
quantitatively demonstrated. For practical implementations, a
UWB receiving tag antenna, a T-shaped resonator, and a UWB
transmitting tag antenna are integrated, fully printed on PET
substrate and connector-free as shown in Fig. 2 compared to
authors’ prior work [5] where the tag and antenna have been
used separately.

B. Measurements and Data Collection

Overall, the measurement setup is similar to that used
in [5]. The proposed chipless RFID system consists of the
transmitter reader/tag antennas, receiver reader/tag antennas
and resonator tag attached to different material objects (plastic
box, aluminum can, and plastic bottle filled with water) its
height of 8 cm from the ground, in a realistic environment as
shown in Fig. 3. The Rx/Tx antennas were cross-polarized
to enhance cross-talk isolation and placed on the sponge,
the thickness of 4 cm. The S-parameters were measured
using a vector network analyzer (VNA), with a total of 612
measurements varying in the range of interrogation distances
2 to 50 cm (in step of 3 cm), with different objects where tag
placed with consideration of radiation pattern between reader
and tag, and in the presence of clutter in between the tag and
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Fig. 1. Simulated S21 values of (a) the tag ‘00’, (b) the tag ‘10’, (c) the tag
‘01’, and (d) the tag ‘11’ with respect to attached materials.

Fig. 2. Inkjet printed chipless RFID tags and antennas.

reader. To emulate the clutter, a paper sheet or a copper sheet
(18 cm x 20 cm) was always placed in the middle of the tag
and the reader antennas as shown in Fig. 4-(b),(c).

In other words, each tag underwent a total of 153
measurements varying the: 1) range of distances, 2) object
materials, and 3) presence of clutter. S-parameters of the
measurement data were saved from 1 to 10 GHz in total 500
points per measurement. Only the information of the S21,
which serves as the channel transfer function between the
reader antennas involves discrete frequencies, were interested
and used in the training. To acquire the 612 measurement
dataset faster, MATLAB Instrument Control Toolbox is used to
communicate with a VNA directly for collecting and analyzing
data, visualizing the results, and automating test without
having to save and import it into MATLAB at a later time.

III. MACHINE LEARNING APPROACH AND PERFORMANCE
EVALUATION

From the literature, four potential ML approaches were
identified: Decision Trees, k-Nearest Neighbor (k-NN), Linear
Discriminant Analysis (LDA), and Support Vector Machine
(SVM). We have explored these approaches and the effect of
combining different RF features to see how this does affect
the performance. As mentioned in Sec. 2-(B), the measured
S21 parameters from 1 to 10 GHz with 0.018 GHz interval (in
total 500 points per measurement) were used as input data for

(a) (b) (c) (d)
Fig. 3. (a) Tag attached to the plastic. (b) Tag attached to the aluminum can.
(c) Tag attached to the plastic bottle filled with water. (d) Measurement setup
from reader side.

(a) (b) (c)
Fig. 4. (a) No object between the tag and the reader antennas. (b) Paper sheet
between the tag and the reader antennas. (c) Copper sheet between the tag
and the reader antennas.

the training process. The output of the algorithm was set as
the parameter, the IDs of the tags.

A. Detection Results in Different Context

One of the fundamental motivations for this research was to
create a practical chipless RFID tag reading system, which can
enable the easier detection of items in realistic environments
such as not only tagging the objects which have high reflective
and high absorptive materials but also feature an accurate
detection/interrogation in the presence of scattering objects in
the vicinity of the tags and reader. To verify the effect of
the underlying material as well as of the presence of nearby
objects, an extract set of datasets at specific composition
(17*4=68) from the whole dataset was not used for the
training. In other words, 68 datasets were not included for
training, but were then used as testset to demonstrate the effect
of this specific dataset on the RFID system performance under
a certain condition.

As Table 1 clearly shows how the accuracy changes for
different materials under the tag and for different objects
nearby, the accuracy improvement through the presented
technique is very significant especially in challenging contexts
lacking detailed data, such as the presence of a copper sheet
between the reader and tag antennas. After training with
544 measured data points while leaving 68 others with the
proposed SVM and LDA classification, the trained model
displayed the lowest error rate of around 23.93%, as shown in
Table 1, for measurement data sets with a copper sheet that
were not included in the training. It can be easily observed that
the dataset composed of measurements with a copper sheet
have a more prominent impact of the classification capability
than other factors. Although, the tag ID detection accuracy
decreased up to 12% with the highly reflective object between
the reader and tag antennas, an accuracy above 97% was
achieved utilizing combined features will be discussed in this
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No object Paper Sheet Copper Sheet

SVM LDA SVM LDA SVM LDA
Plastic box 67.1 69.5 67.6 68.9 74.8 79.4

Aluminum can 69.1 68.4 70.6 68.6 75.2 76.1
Bottle filled 67.6 69.9 68.9 67.8 75.7 75.2
with water

Average Error rate 31.4 31.27 23.93

Decision Trees k-NN LDA SVM

Magnitude 43.5 52.3 70.3 70.6
Real 28.9 38.9 58.8 42.2

Magnitude & Phase 86.9 97.2 98.2 98.5
Real & Imaginary 79.9 96.6 97.2 90.3

section part B, suppressing the effect of the environment and
nearby highly reflective objects.

B. Performance Characterization of tag detection

In order to detect tag IDs, several classification algorithms
were trained with multidimensional information generated
from various possible combinations of all or subsets of
magnitude, phase, real, and imaginary information of S21

which form the hybrid features. Results, presented in
Table 2, based on these combined features show indeed a
substantial improvement in the algorithm prediction resulting
in significant enhancement in tag ID detection. Table 2 shows
that the LDA classifier achieved an accuracy of 98.2% when
magnitude and phase information of the measured S21 were
used for training process. Moreover, k-NN classifier also
features high accuracy of reading success rates above 96%
for raw data, without any cross-talk or environmental-clutter
removal calibrations. Especially for SVM classification,
several kernel functions of SVM techniques were explored
including linear, quadratic, cubic and Gaussian functions.
Results obtained show that a cubic kernel method outperforms
the other methods for detecting tag’s IDs with an accuracy of
98.5% as also shown in Table 2. In this context, the algorithm
demonstrates a remarkable performance for detecting tag’s
IDs comparable with those obtained by other classification
methods.

To further understand the ability of the trained model to
successfully read chipless RFID tag IDs for distances ranging
between 5-50 cm, the detected and the actual ID values of
each different testset were analyzed. Every testset composed of
12 measurement configurations at constant ranges with values
between 5-50 cm in steps of 3 cm, for different attached
materials and nearby objects that had not been included in
the training sets. Since the amount of original data used
for the training was relatively independent between each
measurement sets, extract testset from the measured data are
essential to verify the prediction capability. Another reason to
create the testset from measured data that has not been used
for the training before in this application is to demonstrate
the robustness of the chipless RFID measurement approach,
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Fig. 5. (a) Detection accuracy for different materials attached to the tag at
different interrogation distances. (b) Detection accuracy for different nearby
clutter objects placed between the reader and the tag antennas for different
interrogation distances.

especially in challenging contexts such as these used here
with large antenna crosstalk and significant nearby clutter and,
thereby, difficult to extract tag IDs. After training with 1200
(600 of magnitude data and 600 of phase data) measured data
points while leaving 24 (12 of magnitude data and 12 of phase
data) others at each distance for testing with the proposed SVM
classification, the trained model displayed an accuracy above
90% during self-testing for distances up to 40 cm with the
exception of the case of dataset with the copper sheet “clutter"
object causing a high reflection close-by, as shown in Fig. 5,
for dataset that were not included in the training. For example,
100% of accuracy in Fig. 5 is calculated where the trained
model correctly detects 24 tag’s IDs among 24 cases of the
test dataset.

This work reveals the very significant read range and
successful interrogation enhancement that can be achieved
with this technique, without any required knowledge of the
specific operating environment, and in practical conditions
featuring variable interrogation distances and dynamically
changing clutter without the need for additional calibration.

IV. CONCLUSION

In this study, the feasibility of a ML classification approach
for highly accurate and robust identification of chipless
RFID applications in realistic environments is discussed.
First, four tags encoding the four 2-bit tags with two
UWB monopole transmitting and receiving antennas were
inkjet-printed onto flexible low-cost PET substrates. The
implementation of several ML classification techniques for the
effective transponder reading not only for a wide variety of
ranges and contexts but also for different commercial objects
attached to the chipless RFID tags, while providing tag-ID
detection accuracy of up to 98.5% was provided. This is
the first application of such concepts for enhanced-accuracy
detection of chipless RFIDs along with a robust reading
capability in realistic environments. This approach could
potentially enable not only the successful tagging of objects
consisting of highly reflective/highly absorptive materials but
also feature an accurate detection/interrogation in the presence
of arbitrary scattering objects in the vicinity of the tags
and reader eliminating the need for any additional processes
such as background subtraction technique and calibration for
specific materials.

Table 1. Accuracy without specified composition of the dataset 

Table 2. Comparison accuracy of the different trained models 
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