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ABSTRACT This paper addresses backscatter communications as a new paradigm for Internet of Things
(IoT) sensor wireless solutions. The paper clearly presents the history background of the technology and then
makes a summary of the more recent developments form several groups around the world, with emphasis in
US and Europe groups. The analysis done in this paper will address circuit and physical layer approaches
for such a solution and its real implementations, having in mind IoT sensors for long range high speed

communications.

INDEX TERMS Backscatter, wireless communications, electromagnetic harvesting, IoT.

I. INTRODUCTION

Backscatter communications are a change in paradigm that
will shape the face of Internet of Things (IoT) communica-
tions in the near future. Radio Frequency (RF) Backscatter
was proposed initially as a spy device with a great idea for
modulating an RF signal [1], and from them to know it has
travelled a great path for implementing commercial and non-
commercial solution, being Radio Frequency Identification
(RFID) transponders the most important commercial devices.
In this paper we will present the work done by several groups
in US and Europe in order to substitute the traditional com-
munication architectures in IoT devices.

The novelties discussed in the paper addresses very high
speed backscatter solutions based on higher order modula-
tions, which will allow near 1 Gbps transmission with these
approaches. Millimiter Wave (mmWave) backscatter sensors,
ambient backscatter, where the RF signal is re-used from
available commercial RF signals not thought to be backsacat-
tered at first, all digital approaches, allowing to connect an-
tennas directly to the digital Integrated Circuit (IC)’s and very
long range backscatter approaches.

The authors expect that this could be a good source of infor-
mation for research-oriented works using the new backscatter
paradigm to build improved IoT sensors.

This paper is divided into several sections. Section II
presents the history background of backscatter radio or com-
munication; Section III exposes some different combinations
in backscatter communication: backscatter communication
combined with Wireless Power Transfer (WPT) capabilities
in Section IIILA, in Section III.B backscatter communica-
tion is combined with high order modulation, and in Sec-
tion III.C it is presented towards GBPS transmission or ul-
tra highbit rate backscatter modulators. Section IV presents
ambient backscatter and is divided into two sections. The
first one shows us the spectrum opportunities able to per-
form backscatter communication, and the last one shows sev-
eral ambient backscatter systems. Section V describes works
on analog backscatter. Then, all-digital backscatter systems
are presented in Section VI. Section VII exposes ultra-long
range backscattering communication in two sub-sections, Sec-
tion VIL.A is mm-Wave backscattering-enabled (mmID) com-
munication and localization, Section VIL.B exposes tunnel

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

864

VOLUME 1, NO. 4, OCTOBER 2021


https://orcid.org/0000-0001-9881-5264
https://orcid.org/0000-0003-3767-4538
https://orcid.org/0000-0002-7402-2099
https://orcid.org/0000-0002-8042-2347
https://orcid.org/0000-0002-5953-3800
https://orcid.org/0000-0002-3444-5978
https://orcid.org/0000-0002-4580-012X
https://orcid.org/0000-0003-0476-3577

& IEEE Journal of
& Microwaves
L=
Leon Theremin EAS system
- The Thing / Great Seal Checkpoint syste_ms
[ Bug and Sensormatic
LY,
- Harry Stockman
J. L. Baird “Communication by Mario Cardullo
Radio transmitter Means of Reflected Passive RFID EPC system
for object detection Power” version 1.0
1880 1900 1920 1940 1960 1980 T 2000 \
RFID in railroad
T AEI Standard wisp
Ernst Alexanderson Robert Watson-Watt Donald Harris
Photophone ) Radio detection and Battery-free system for Vehicle toll
I demonstrated the first . voice communication
discovery by CW radio generation ranging (RADAR) ¢ collection
Alexander i with backscatter a
Graham Bell and trqnsrr}lssmn of modulation /
- radio signals

FIGURE 1. History of RFID and backscatter communication.

diode-based backscattering communication and Section VIII
presents reading backscatter signals with legacy devices. Fi-
nally, Section IX presents the discussion about the potential,
limitations and applications of the technologies presented and
the conclusions are drawn in Section X.

II. HISTORY

The principle of communication by reflection was first discov-
ered in 1880, with the photophone developed by Alexander
Graham Bell [2]. The objective of the system was to perform
speech communication based on a beam of light, in which
the sound waves were projected through an instrument to the
mirror and by its vibration, a modulation was performed in
the reflected beam of light. By demodulating the received
signal at the receiver, it was possible to reproduce the trans-
mitted signal. This tests were performed at a distance of 213
meters. In 1945, a spy listening device was developed by
Leon Theremin and was inside the Great Seal of the United
States [1]. This device was used from the Soviet Union to spy
on the US embassy in Moscow and consisted in a monopole
antenna connected to a resonant cavity with a flexible sound-
sensitive conductive membrane. The changes from the mem-
brane caused different antenna’s load and through this it was
possible to radiate the device with a RF Continuous Wave
(CW) signal and demodulate the reflected wave originated by
the voices of those present in the room.

In 1948, Harry Stockman presented the principle of com-
munication with the use of reflections generated by mechan-
ical devices, which included audio transfer over microwave
frequencies [3]. Nowadays, the modern tags use similar mod-
ulated backscatter operating principles. These concepts con-
tributed to the evolution of commercial applications based on
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backscatter communication. This technology when combined
with WPT can enhance many technologies, as Donald B. Har-
ris did in 1960 when proposed a battery free system for voice
communication based on backscatter radio and WPT, [4]. This
advancement contributed to the development and grown of
Radio Frequency Identification (RFID) technology. In this
decade, the companies began commercializing anti-theft sys-
tems that used radio waves to determine whether an item had
been paid for or not. The 1-bit Electronic Article Surveillance
(EAS) tags were used for counter-theft and were the first
large scale use of RFID concept [5]. Moreover and with the
appearance of the Wireless Identification and Sensing Plat-
form (WISP) [6], which is a wireless, battery-free platform for
sensing and computation that is powered and read by an UHF
RFID reader with the capability of sensing the environment
it encouraged the scientific community to research on the
backscattering-based sensing. Some other commercial appli-
cations used the technology for inventory management, for the
automotive industry, for the location of livestock and wildlife,
for anti-theft in the retail trade, for keys and electronic docu-
ments, and in agriculture and nature reserves [7]. The author,
in [8], shows that it is impossible to cover a field now as vast
as the RFID industry as the author of [9] shows some of the
latest RFID sensor applications for IoT applications. Fig. 1
presents the major milestones of RFID technology.

I1l. DIFFERENT COMBINATIONS IN BACKSCATTER
COMMUNICATION

A. BACKSCATTER COMMUNICATION WITH

WPT CAPABILITIES

The passive tags are energized through the reader and thus
are responsible for the modulation of the incoming wave.
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To improve the RFID tag in order to have the possibility to
store data or to increase the computing capabilities, a careful
design embedded with WPT capabilities should be consid-
ered. This integration has enabled the interest in the concept
of passive wireless sensors, which will have an important role
when considering an Internet of Things (IoT) scenario with a
lot of sensors deployed everywhere sensing the environment
without the need of having batteries in each sensor. Nowadays,
the increase of IoT sensors will imply the heighten of batteries
to be deployed, which will have a negative ambient impact.
As it was mentioned previously, battery-powered tags can
improve the distance of communication but have some lim-
itations when referring to the battery cost and its replacement.
Thus, the alternatives to the battery systems are based on EH
technology or other different sources (solar [10], motion or
vibration [11], ambient RF [12]). To overcome the problems
from the EH and batteries, the concept of WPT was explored
to supply the tags with power.

In [14], a solution combining inductive WPT and Ultra
High Frequency (UHF) RFID was presented and it was shown
that using both the inductive WPT and UHF RFID it was
possible to increase the tag sensitivity by 21 dB. However,
the major problem of using inductive WPT is the proximity
between the tag and the power source. Regarding electromag-
netic WPT, a comparison between different rectifier topolo-
gies and different stage levels was presented in [15]. The
obtained results show a high dependence between the received
power and the most efficient topology. In [16] the authors
presented a structure with a two-tone signal at 1.8 GHz and
2.4 GHz, which improved the voltage output in 20% higher
in average when comparing with a single-tone input. The
work in [17] presents a reader that is configured to transmit
power in CW. The tag uses a storage capacitor that is able
to charge up to 5.5 V after the rectification. After the storage
capacitor is charged, it powers the tag that performs sensing
and communication, reflecting the carrier wave. This process
was proven at a distance of 1 m between the reader and tag.
The same principle was used in [18].

The work in [13], [19], as can be seen in Fig. 2, presents
a solution using dual band wireless power and data trans-
fer. In this solution, two frequencies were considered: one
was used to power the tag and the other to perform the
communication through backscatter. A similar approach, us-
ing different frequencies for energy and communication was
presented in [20]. In that work, a different circuit for the
RF-DC conversion was used for each frequency. The work
in [21] used two different frequencies for RF communication
and WPT. The authors used 5.8 GHz to power up a por-
tion of radio that is connected to a battery with an RF-DC
converter, which will only activate the battery for the main
transceiver as a Wake-on Radio (WOR). Nevertheless, the
system is not passive and uses the WPT to activate the main
transceiver. Despite of having passive tags for communica-
tion, it is utmost important to improve the data rate in the sen-
sors in order to reduce the power consumption and extend read
range.
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FIGURE 2. Photograph of implemented system with backscatter modulator
combined with WPT. Elemented system with backscatter modulator
combined with Wireless Power Transmission (WPT). Element values are

L1 =212 mm, W1 = 1.87 mm, L2 = 15.1 mm, W2 = 1.0 mm, L3 =

21.9 mm, W3 = 0.8 mm, L4 = 11.3 mm, W4 = 1.87 mm, L5 = 17.1 mm,

W5 = 1.2 mm, L6 = 6.7 mm, W6 = 1.1 mm, L7 = 18.6 mm, W7 = 0.7 mm,
R1 = 50, and C1 = 47pf. Substrate for the transmission lines is Astra MT77,
thickness = 0.762 mm, ¢, = 3.0, tan § = 0.0017. Original Source: [13].

B. BACKSCATTER COMMUNICATION WITH HIGH ORDER
MODULATION

Technological advancements increased the data transmission
so, the basics modulations, such as Amplitude Shift Keying
(ASK), Phase Shift Keying (PSK) and Frequency Shift Key-
ing (FSK) become insufficient, which originated higher-order
and multi-level modulation. This type of modulation can with-
stand high-intensity data transmission in a broader range of
applications, and the required data rate will depend on the
application or scenario.

N-ASK, N-FSK and N-PSK can represent more symbols
through different values of amplitude, phase or frequency. The
N variable represents the modulation order, and in the case
of N-ASK, the number of signal amplitude levels the number
of symbols that can be represented. In the case of N-PSK, for
example, when N is 4, it is possible to represent four sym-
bols with four different phase values. For N-FSK when the
modulation order increases, the required bandwidth increases,
which presents an obstacle to this modulation type.

Daskalakis et al. [22], designed and integrated an ultra-
low-power sensor tag. The tag could read up to four sen-
sors and modulate data using 4-Pulse Amplitude modulation
(PAM) to increase the transmitted bit rate and send it to a
low-cost Software Defined Radio (SDR) reader. The tag did
not require batteries and was supplied with a small solar panel,
consuming only 27 puW.
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FIGURE 3. Quadrature amplitude modulation (QAM) modulation system.

FIGURE 4. Photograph of the 16-QAM backscatter circuit. Original source:
[23].

It is possible to combine some basic modulations to ob-
tain more modulation types, like the QAM which combines
amplitude and phase modulation. This technique uses this
combination to change the antenna impedance, and as shown
in Fig. 3, each impedance will correspond to a symbol used to
transmit the digital message.

In [23], the authors presented a novel modulator that works
with a Wilkinson power divider with a phase shift and two
transistors working as switches to generate M-QAM, as can
be seen in Fig. 4. This modulation technique permits high-
bandwidth and low power wireless communications. The 16-
QAM modulator demonstrated in [23] has an energy con-
sumption as low as 6.7 pJ/bit for a bit rate of 120 Mb/s.

Thomas et al. [24] presents a 4-PSK/4-QAM system for
backscatter communication, increasing the data rate and re-
ducing the on-chip power consumption. The modulator is
composed of a semi-passive tag operating in 850-950 MHz
with a bit rate of 400 kbits~".

C. TOWARDS GBPS TRANSMISSION OR ULTRA HIGH BIT
RATE BACKSCATTER MODULATORS

Typically backscatter communication systems have been asso-
ciated with low bit rate transmission rates such as for example
is the case of commercial RFID systems that operate with bit
rates in the order of 100 Kbps [32]. The low bit rate results
in very low power consumption (current RFID tags can have
sensitivities of less than —20 dBm) [33], which is particularly
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suitable for sensing applications that involve a simple iden-
tification or environmental parameter sensing which requires
random or periodic measurements with considerable periods
such as days, weeks or months. The ability for low power is
further enhanced by passive sensing architectures [34], [35]
and [36].

More recently however, backscatter modulators capable of
very high bit rates and complex modulation formats have been
demonstrated, as can be seen in Table 1.

These high modulation rates are obtained while maintain-
ing a very low power front-end comprising one or two ele-
mentary nonlinear devices, compared to traditional transceiver
architectures that require amplifier and oscillator stages that
are significantly more power hungry.

Furthermore, a millimeter wave backscatter front-end sup-
porting Gbps modulation rates has been demonstrated [37].
The front-end comprised an off-the-shelf Avago VMMK-
1225 pHEMT transistor and a five element microstrip series
fed circularly polarized antenna array, inkjet printed on a flex-
ible liquid crystal polymer (LCP) substrate. A BPSK signal of
4 Gbps was successfully transmitted by applying the modula-
tion signal on the transistor gate. In addition to demonstrating
for the first time a Gbps millimeter wave backscatter system,
one has to highlight the use of an additive manufacturing tech-
nique such as inkjet printing to fabricate the front-end, which
presents a step towards low cost, large volume fabrication of
millimeter wave systems and furthermore, the use of a flexible
substrate which itself is a step towards enabling the imple-
mentation of conformal front-ends that can be integrated in
wearables. Due to the backscatter architecture, the front-end
presents an ultra low 0.15 pJ/bit power consumption, which
is significantly lower than the typical consumption associated
with millimeter wave front-ends. The fabricated tag and the
test set-up is shown in Fig. 5.

IV. AMBIENT BACKSCATTER

With the evolution of telecommunications and the emergence
of new communication types, the number of transmitters and
receivers has increased exponentially rising the economic and
environmental costs. Research has turned to reuse existing Ra-
dio Frequency (RF) signals trying to reduce costs and Electro-
magnetic (EM) pollution.

A. SPECTRUM OPPORTUNITIES

A backscatter tag can reflect and modulate RF signals from
TV, Cell or Frequency Modulated (FM) towers, Wi-Fi (Wi-
Fi), ZigBee, or Lora access points, creating the concept of
Ambient Backscatter.

The work in [38], analyses the frequency spectrum in
Aveiro, Portugal. In Fig. 6, it is possible to see pikes of
power in several frequencies, corresponding to different de-
vices. Digital Television (D-TV) is the Portuguese Digital
Television broadcast and Multichannel Multipoint Distribu-
tion Service (MMDS) is mainly used for satellite television
broadcast as an alternative to cable television. Global System
for Mobile Communications (GSM), Digital Cellular Service
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TABLE 1. Performance Summary and Comparison Between High Order Backscatter Modulators

Reference [25] [26] [27] [28] [29] [30] [31]
Integrated Discrete Discrete Discrete Integrated Discrete Integrated
Technology o o o
circuit components | components | components circuit components circuit
Frequency 5.8 GHz 900 MHz 900 MHz 868 MHz 2.9 GHz 2.45 GHz 10 GHz to 11.1 GHz
Modulation 32-QAM 4-QAM 16-QAM QAM BPSK 16-QAM BPSK
Data rate 2.5 Mb/s 400 kb/s 96 Mb/s - 330 Mb/s 960 Mb/s 10 Mb/s
Power consumption 113 uW 115 nW 1.4 mW 80 mW 0.12 mW 59 uW -
Energy p/bit 45.2 pl/bit 0.29 pl/bit 15.5 pl/bit - 0.36 pl/bit 61.5 fl/bit -

SDR Receiver

Oscillating
Circuitry

FIGURE 5. Left: mm-wave backscatter front-end for characterization and
flexible printed x 1 circularly-polarized antenna array with Gbit front-end.
Center: Wireless measurement setup. Right: Tx and Rx chains with
Software Defined Radio. Original source: [37].
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FIGURE 6. Power spectrum of Aveiro. Original source: [38].

(DCS) and Universal Mobile Telecommunications System
(UMTS) are mobile communications systems. GSM is also
known as GSM-900 and DCS as GSM-1800.

Although not referenced in Fig. 6, signals such as FM,
Wi-Fi, BLE, or 5G can also be used as sources for ambi-
ent backscatter communications. The power values related to
these bands are not present in any of the works, except the
frequency band related to FM signals that has values approxi-
mately between —55 dBm and —88 dBm for the city of Aveiro

The spectrum opportunities highlighted are:

e D-TV -750to 758 MHz;

e GSM - 925 to 960 MHz;

e DCS - 1805 to 1880 MHz;

868
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FIGURE 7. FM Backscatter system overview. Original source: [39].

e UMTS - 2110to 2170 MHz;
e MMDS - 2500 to 2690 MHz;

B. AMBIENT BACKSCATTER SYSTEM

The FM signal is a popular source in this type of system. In
work [39], the authors used this type of wave to transmits the
sensor data present in agricultural fields. The tag consists of
an ultra-low-power PIC16 Microcontroller Unit (MCU) con-
nected to an RF front-end, as depicted in Fig. 7. In the exper-
iment the FM tower is located far away from the backscatter
tags, saying 34.5 km. In this bistatice arrangement, the com-
munication range between the tag and the receiver reaches
around 5 m. This backscatter link can support a data rate of
2.5 kbit s~! with a 36.9 1] energy consumption per packet.

Still, with FM radio signals as the source, Wang [40],
showed that it is possible to transform backscatter tags in FM
radio sources and regular FM receivers, like smartphones or
autoradios, into backscatters demodulatores. The prototype
designed and executed achieved a data rate of 3.5 kbit s~!
and ranges of 1 to 20 m while consuming just over 11.07 uW
of power. To improve the prototype’s work and usefulness, an-
tennas were introduced in posters or banners to communicate
advertisements to cars in the vicinity.

Kellogg in 2014 [41] used Wi-Fi Access Point (AP)s as a
signal source for backscatter communication. They set the RF-
powered devices to be wireless sensor nodes embedded in
everyday objects. The signal is reflected by an analog circuit
connected to an antenna and modulated to be received by a
commercial reader. It is a standard mobile phone, as shown in

VOLUME 1, NO. 4, OCTOBER 2021
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FIGURE 10. Monostatic backscatter communication setup. Plant sensing is
achieved by the tags and the information is sent back to a low-cost reader.
Information is modulated using Morse coding on a 868 MHz radiated
carrier. Original source: [44].

Fig. 8. The experiments achieved communication rates of up
to 1 kbits~! and ranges of up to 2.1 m.

Another work that uses Wi-Fi signal as the main source
is BackFi [42]. It uses Wi-Fi AP to transmit data from IoT
sensors. Modulating Wi-Fi signals was possible to achieve
communication rates of up to 5 Mbits~! at a range of 1 m
and 1 Mbits~! at a range of 5 m.

TV Towers can be used as backscatter communication car-
rier sources and work in the same way as a dedicated signal
source. Liu [43] used existing TV and cellular transmissions
to eliminate the need for wires and batteries, thus facilitating
universal communication where devices can communicate at
unprecedented scales and in previously inaccessible locations,
as shown in Fig. 9. The backscatter tag uses a 258 mm dipole
antenna, optimized for a 50 MHz subset of UHF TV band
and connected to it, had RF switches optimal for the ambi-
ent signals’ operational frequencies. This scheme achieves an
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the tag. Original source: [48].

information rate of 1 kbits~! over distances of 1.5 m while
operating outdoors and 1 m indoors.

V. ANALOG BACKSCATTER

Nowadays, the high-cost and the high-power requirements of
the Wireless Sensor Networks (WSN) hardware prevent its
limited usage in many applications like in the industry or in
agricultural sector. For example in agriculture applications,
the deployment of these systems, therefore, relies on reducing
the cost to an affordable amount. Analog Backscatter radio
communication combined with the use of energy-assisted (or
not) sensor tags is a method that addresses the aforementioned
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constraints [44]. This leads to the concept of precision agricul-
ture or smart farm that enables farmers to optimize the usage
of resources, e.g. water [45].

Here a low-cost and low-power wireless sensor tag was
developed which is able to sense the temperature difference
between the leaf and the ambient air. This difference is known
to be relevant to the water stress of the plant, thus, the tag
acts as an indicator to guide or control the local irrigation
system [46].

The tag implemented here includes a microcontroller
(MCU) for all base band processing and also the control pur-
pose. An external timer was added for time synchronization of
the data modulation. In the experiment, the information cap-
tured by the sensors is first converted to digital signals through
an ADC, and then voltage pulses are generated to drive an
RF switch. The backscatter modulation scheme was set to the
Morse code that is applied on the carrier signal of 868 MHz.
Here the Morse code uses On-Off-Keying (OOK) modulation
which translates to presence and absence of the backscattered
signals. In the experiment the reader was implemented using a
low-cost SDR which samples the captured signals for further
baseband processing.

A prototype was implemented which was powered by a
small solar panel producing energy of around 20 uW. The
over the air experiment was conducted to demonstrate the
successful backscatter link established up to a distance of 2
meters.

VI. ALL-DIGITAL BACKSCATTER SYSTEM

All the works described above were based on semiconduc-
tors and matching networks to obtain the desired output
impedances.

To minimize the costs of producing Backscatter tags and
leveraging the MCUs capability to receive and store data from
the sensor networks, the work presented by Torres et al. [47],
shows a fully digital ambient backscatter system which op-
erates with ambient FM sources, with a power of approxi-
mately 70 dBm. In this system the backscatter module uses
an ESP32 MCU and a telescopic monopole as an antenna. The
variation of a digital IO pin causes an impedance variation in
the connected antenna reflecting the incoming FM waves with
an ASK modulation and can be demodulated by a low-cost
RTL-SDR USB dongle, as shown if Fig. 11.

The solution presented enable a large number of applica-
tions that can benefit from the differents technologies that can
be used with the commercial modules tested, such as Wi-Fi,
Bluetooth and ambient backscatter communication.

In [48], the author produces a digital backscatter tag con-
necting a dipole to a digital IO pin of the PIC16 MCU, pre-
sented a digital backscatter tag.

The BPSK modulation was created by varying the state of
the digital pin. The different states of the digital pin, input, and
output introduce a different impedance in the dipole, causing
a total reflection or absorption of the transmitted wave gener-
ated by a Vector Signal Generator. As shown in Fig. 13, the
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wave, after reflection by the tag, creates a coherent set of bits
that a commercial reader can demodulate.

VII. ULTRA-LONG RANGE BACKSCATTERING
COMMUNICATION

A. MM-WAVE BACKSCATTERING-ENABLED (MMID)
COMMUNICATIONS AND LOCALIZATION

1) BACKSCATTER ARCHITECTURES, UNIQUELY, ENABLE
LONGER RANGES AT HIGHER FREQUENCIES

The expansion of the concept of RFIDs to mmlIDs has first
been initiated in [49], where mm-wave RFIDs were intro-
duced for the first time as mmlIDs, demonstrating the poten-
tial for short-range, low-power, and high data-rate communi-
cations. The promised ultra-high Gbps modulation rate was
realized in the mm-wave backscattering system presented in
Section III. In this section, we target the capability of mmIDs
in achieving ultra-long range communications using unique
combined antenna and beamforming architectures. The con-
cept of “path loss” is generally invoked to evaluate the de-
pendency of link budgets as a function of frequency. Due to
its oc 1/f? relationship, it is almost uniformly concluded that
link budgets suffer from increases in operating frequencies.
This path loss is inflicted twice upon monostatic backscatter
links—back and forth—and it may, consequently, seem ridicu-
lous to expect acceptable or even enhanced link budgets from
backscatter systems operating in higher-frequency bands. This
reasoning is, nevertheless, fallacious; twice. As described in
excruciating details in [50], losses due to propagation (in
approximately lossless media) are solely the cause of a di-
lution of power, which is not a function of frequency. As a
consequence, two systems—one operating at frequency fi,
and the other at frequency f>, where f| < fo—using identi-
cal emitting equivalent isotropically radiated powers (EIRPs)
and receiving antenna effective apertures witness exactly the
same link from the reader to the tag. However, due to the en-
hanced gain at frequency f>, the higher-frequency-operating
system benefits from a link budget enhanced by (%)2 for the
backscattered signal on the way back to the reader: the energy
of the backscattered signal is focalized in the direction of the
reader (hopefully), where it needs to go. Concretely, every-
thing else being equal, this means that a backscatter system
operating in the 24.125 GHz ISM band instead of its equally-
sized 900 MHz UHF-operating counterpart is endowed with
a 28.5 dB boost in SNR or, equivalently, a 5.2x increase
in reading range. Despite this theoretical benefit, one may
object that—due to the necessity for most tags to be approxi-
mately orientation-agnostic—relying upon a narrow high-gain
beam may be impractical. However, the use of backscattering
approaches uniquely enables the employment of structures
whose very typologies passively re-emit the wave (with high
gain) in the direction of the reader: retrodirective front-ends.
While contingent upon the vicissitude and idiosyncrasies of
antenna and (more generally) front-end design, it will be
shown in the next subsections how the implementation of this
theoretical realization has already been applied to demonstrate
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FIGURE 14. (a) Picture of the fully-inkjet-printed Van-Atta reflectarray
chipless mmID [51], (b) Measurement configuration for a 30 m-range
detection of the chipless tag, Original source: [50].

unmatched backscatter performance, using two unique struc-
tures: the Van-Atta reflect-array and the Rotman lens.

2) VAN-ATTA CROSS-POLARIZING RETRODIRECTIVE
ARCHITECTURE FOR ULTRA-LONG-RANGE CHIPLESS AND
SEMI-PASSIVE MMIDS

The first implementation of this principle was in the form of
an ultra-thin and flexible fully-inkjet printed cross-polarizing
Van-Atta-based chipless RFID (shown in Fig. 14(a)), reported
in [51] and matured in [50]. The tag consists of five dual-
polarized linear rectangular-antenna patch arrays connected
symmetrically with reference to the axis of symmetry in order
to form a Van-Atta retrodirective structure. By connecting
horizontally-polarized antenna ports to their vertically po-
larized complements, the 28 GHz structure achieved a high
cross-polarized monostatic Radar Cross-Section (RCS) of up
to —27 dBsm, varying only by 10 dB over an angular cov-
erage of 120°. Thanks to the high signal level provided by
the retrodirective effect and to the cross-polarization of its
reflected signal—allowing its polarimetric isolation from the
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nearby interfering clutter—the tag was able to be detected
at an unprecedented range of 30 m in realistic conditions,
as shown in Fig. 14(b). This achievement outperformed the
state of the art in chipless RFID reading range by more than
an order of magnitude. Furthermore, the large bandwidths
available and the use of a novel frequency/delay 2D spectro-
gram processing scheme allowed for the precise localization
and the resolution of several tags in close proximity, thereby
demonstrating the capability of the approach to provide a
foundation for the deployment of ultra-dense chipless RFID
constellations.

The aforementioned chipless structure was modified in [52]
to enable it with backscatter communication capabilities. To
the lines connecting the linear antenna arrays together were
added low-cost single-GaAs-FET switches, enabling OOK
modulation of the backscattered signal. The baseband of the
structure, shown in Fig. 15(a), was constituted of a single low-
power LMCS555 timer, consuming approximately 216 uW,
supplied by a flexible solar cell. The entire 28 GHz structure
was printed on a thin flexible Rogers LCP substrate, along
with a fully-inkjet-printed PABS-functionalized single-wall-
carbon-nanotubes ammonia sensor. The power-autonomous
structure thereby allowed the real-time measurement of air-
borne ammonia levels in its vicinity at an unprecedented
monostatic range in excess of 80 m, as shown in Fig. 15(b).
This effort not only demonstrated that the use of mm-waves
could open the door for the advent of ultra-thin energy au-
tonomous mmlID backscatter tags with unparalleled reading
range, but also provided a preview of, arguably, the most
impactful capability of such systems. Indeed, due to the rel-
atively large bandwidths available in mm-wave bands, and
to the commoditization of low-cost mm-wave radar modules,
these mmlID tags offer the opportunity to enhance the state of
the art of real-time localization technologies with ultra-low-
cost battery-less tags detectable in both radial and angular
dimensions at ranges exceeding 100 m. A preview of such
advances is provided in [53], where miniaturized 24 GHz tags
were localized in such a manner with better than 20 cm of
accuracy.

3) ROTMAN LENS RETRODIRECTIVE ARCHITECTURE FOR
FULLY-PASSIVE MMID

An alternative approach to the Van Atta architecture presented
here is the use of passive Beamforming Networks (BFNs)-
based RFID tags, that have the ability to focus the reflected
signal in a specific direction. The Rotman lens is a unique
type of passive BFNs that combines all the power received on
its antenna ports, on one side, and focuses it towards the beam
port(s) associated with the direction of arrival of the signal.
Depending on the intended use, rectifiers such as in [54], [55]
can be placed at the beam ports to collect the RF power and
convert it to DC, or switches such as in [56] can be connected
to modulate the signal and reflect it back for communica-
tion purposes. Unlike the Van Atta structure that divides the
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FIGURE 15. (a) Picture of the ammonia-sensing inkjet-printed Van-Atta
reflectarray semi-passive mmiD, (b) Measurement configuration for a
80 m-range detection of the semi-passive tag, Original source: [52].

power among its lines and is, therefore, ill-suited for opti-
mal harvesting performance, the Rotman lens—offering RF
combination—can enable the operation of fully-passive RFID
tags at longer turn-on ranges, if rectifiers are connected to the
beam ports to power the tag. Moreover, the Rotman lens can
be modulated by simply changing the load on all beam ports
and is compatible with all impedance-modulation techniques
applied to traditional lower frequency RFIDs. The Van Atta
on the other hand, is limited to amplitude modulation schemes
unless made hybrid and more complex [57], [58].

In [56], a Rotman-based semi-passive RFID backscatter-
ing tag was presented, demonstrating simultaneous high gain
and wide angular coverage, while only consuming 2.64 uW,
fully provided by the attached flexible solar cell, as shown in
Fig. 16(a). The Rotman lens is surrounded by eight antenna
ports from one side, where serially-fed patch antenna arrays
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FIGURE 16. (a) Picture of the fully-flexible power-autonomous
Rotman-based semi-passive RFID tag proof-of-concept prototype, (b) Plot
of the measured monostatic differential RCS as well as the extracted gain
of the structure, Original source: [56].

were connected, and six beam ports with mm-wave switches
attached to them. Added to the structure are the low-power os-
cillator (CSS555) and a voltage regulator. The monostatic dif-
ferential RCS and the gain of the Rotman lens structure were
thoroughly studied in both planar and bent conditions [56].
The structure reveals a peak gain of 16.5 dB and a large
angular coverage of 110°, properties that prove its successful
implementation as a retrodirective array. Fig. 16(b) also shows
that this architecture has a high and isotropic differential RCS
with a measured peak of —15.4 dBsm and a variation of less
than 8 dB for an interrogation angle ranging from —60° to
60°. The long-range communication capabilities of this struc-
ture were also tested in an indoor hallway for ranges up to
a distance of 64 m. With the measured signal-to-noise ratio
in this conducted experiment (determined by the noise floor,
modulation offset and sampling rate), the maximum indoor
range that could be achieved is 179 m with 48 dBm EIRP. By
minimizing the phase noise coupling between the TX and RX
antennas on the reader side—technique used with Van Atta
reflectarray through polarization isolation—the noise floor
could be greatly improved and the expected outdoor range
is calculated to be 1.8 km with the allowable 75 dBm at 5G
frequencies.

VOLUME 1, NO. 4, OCTOBER 2021



IEEE Journal of

@ Microwaves

MHz to THz Community

5.8GHz Tunnel-based
Passive Backscatter System

5.8GHz

\ 4 L

Network <

5.8GHz
Isolation

900MHz Tunnel-based
Rectenna
Matching DC ,\7\}\’

Network

FIGURE 17. Schematic of the fully-tunnel-diodes-based passive
backscatter tag, Original source: [61].

B. TUNNEL DIODE-BASED BACKSCATTERING
COMMUNICATION
Extending backscatter communication ranges can be realized
using high gain retrodirective arrays and BFNs-based RFID
architectures as presented in the previous section. Another
mean to achieve this goal is with the implementation of active
devices known as reflection amplifiers. Two-terminal devices,
such as tunnel diodes, are preferred over NPN transistors,
since they enable at least one order of magnitude lower power
consumption. For example, in [59], the BFT25A NPN transis-
tor was used at 900 MHz as a reflection amplifier for range
extension, realizing a gain of 29 dB at an input power of
—50 dBm. The power consumption of the system was cal-
culated to be 664 W, which is relatively high. Alternatively,
tunnel diodes, based on quantum mechanical effect, have been
used as reflection amplifiers in [60], demonstrating extended
ranges with a measured power consumption of 45 uW and
a biasing voltage of 90 mV. However, the reported voltage
and power requirements in the aforementioned work includes
solely that of the front-end circuitry, a negligible portion
of the overall power consumption of those systems, whose
main power draws are located in their baseband circuitry. The
use of external oscillators, such as the CSS555 micro-power
timer (biased with a voltage of 1.2 V), sets a high voltage
requirement that is difficult to reach with ambient energy har-
vesters. A solution, enabling simultaneous long communica-
tion ranges and low voltage and power requirements, was pre-
sented in [61], based on the use of tunnel diodes as a reflection
amplifier, an oscillator, and a rectifier. The reported system is
shown in Fig. 17, where two tunnel diodes were used: one
as a combined oscillator/reflection amplifier and the second
as a rectifier, to achieve a power-autonomous, high-gain, low-
voltage and low-power 5.8 GHz RFID backscattering tag.
Connected to an LC tank and biased at a specific point
driving its negative resistance region, the tunnel diode can op-
erate as an oscillator. Since they are not limited by transit-time
effects, tunnel diodes can enable oscillations up to GHz fre-
quencies while consuming a fraction of the voltage required
by currently available solutions. The tunnel diode used in this
work was the MBD2057-E28X from Aeroflex, that displays a
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FIGURE 18. Photo of the combined oscillator/reflection amplifier system
with the measured sub-carrier powers over a range of RF input powers and
(inset) plot of the measured spectrum of the modulated and amplified RF
signal for Pin = —75 dBm, Original source: [61].

negative resistance when biased between 70 mV and 180 mV.
However, it was observed that the tunnel diode-based oscilla-
tor is very sensitive to biasing voltage, with a good operation
limited to a biasing range between 70 mV and 90 mV. The
modulation frequency was chosen to be 7 MHz, determined
by the dimensions of the LC tank. Its power consumption was
measured to be 19 uW.

Added to its oscillation capability, the tunnel diode, in
the negative region, displays reflection coefficients I" and
modulation factor greater than unity, resulting in amplified
backscattered signals. The reflection amplifier was first char-
acterized without the LC tank to assess the returned gains
with respect to varying biasing voltages and input powers.
The optimal biasing voltage was found to be 120 mV, where
the reflection amplifier displays a gain of 51 dB for an input
power of —110dBm. At this bias point, the reflection amplifier
consumes only 18 uW. After demonstrating the ability of the
tunnel diode to achieve both a modulation and an amplified
signal in two separate circuits, the two functionalities were
merged in one system using a single tunnel diode. Since the
reflection amplifier is less sensitive to the biasing voltage
compared to the oscillator, 88 mV was chosen as a biasing
point.

The successful operation of the combined oscilla-
tion/amplification functionalities of one tunnel diode was val-
idated, as shown in Fig. 18, where the received powers of
the subcarrier were plotted for an input power ranging from
—105 dBm to —60 dBm. The system is capable of achiev-
ing gains ranging from 21 dB to 48 dB with a modula-
tion frequency of 7 MHz, while merely consuming 88 mV
and 20 uW. This system was then powered using a tunnel
diode-based rectifier designed at 900 MHz, resulting in the
first fully-tunnel-diodes-based power autonomous, long-range
backscattering RFID tag.
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VIIl. READING BACKSCATTER SIGNALS WITH LEGACY
DEVICES

In most reported backscatter systems, a dedicated reader, com-
monly implemented using software defined radios (SDRs),
is required. This inevitably increases the system costs with
regard to both development and deployment. In order to elim-
inate dedicated readers, instead resource to other widely avail-
able wireless infrastructure/devices like mobile phones, Blue-
tooth devices, cellular/IoT base stations, etc., the backscatter
signals that resemble the signal formats in the air interface of
the targeted systems have to be synthesized.

This effort was first attempted in 2014 [41] where the
amplitude-domain backscatter modulation was applied on to
the incoming WiFi signals on a per-packet basis. Though
existing WiFi readers can be reused for backscatter demod-
ulation, it requires the access to vendor-specific Channel State
Information (CSI) and Received Signal Strength Indicator
(RSSI) information from the WiFi chipset, which unfortu-
nately are commonly inaccessible. The same concept was
later exploited to endow various 3D-printed devices, from
push buttons to flowmeters, with the ability to be WiFi con-
nected [62]. Distinct to this non-standard protocol, the WiFi
IEEE 802.11b compatible backscatter signals were synthe-
sized in [63]. Here the required phase shifts through backscat-
tering modulation, e.g. /2 for DBPSK and nz/4 (n = 1,
2, 3) for DQPSK, were achieved by delaying square waves
generated by the digital switches controlling backscatter an-
tenna impedance in time domain. This makes all legacy IEEE
802.11b devices as backscatter readers without any modifi-
cations on hardware and firmware. The unwanted harmonic
spurious created due to square-wave and sine-wave approxi-
mation can be reduced or even eliminated using the techniques
presented in [64]. Recently, with the ability of controlling both
magnitude and phase of each backscatter samples, thanks to
the IQ-backscatter modulators [65], the multicarrier OFDM-
based IEEE 802.11 g signals have been successfully obtained
in [66].

Other efforts have been focused on Bluetooth and LoRa
compatible backscatter signals. In [67], [68], the Gaussian-
shaped 2FSK modulated signals, located in three Bluetooth
advertising channels, were backscattered upon an incoming
CW tone. It achieves energy efficiency of 28.4 pl/bit, two
orders of magnitude lower than that in the conventional Blue-
tooth transmitters. When an ambient Chirp Spread Spec-
trum (CSS) modulated LoRa signal is available, the 2FSK
backscatter modulator was found useful to create a new
LoRa signal in an adjacent frequency channel [69]. Other ap-
proaches to synthesizing LoRa-compatible signals from an in-
coming sine tone were presented in [70] and [71]. Here either
the tag antenna impedance switching frequency, altered by a
voltage controlled oscillator (VCO), or the phase increments
between consecutively switched tag load impedance, altered
through transistor voltages in IQ backscatter modulators, was
utilized to continuously shift the frequency of backscatter
signals. This CSS modulated backscatter signal enjoys the
superior demodulation sensitivity, extending the backscatter
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communication range to hundreds of, or even thousands of,
meters.

On the backscatter tag end, the ambient OFDM modu-
lated signals are non-constant and unpredictable in both time
and frequency domains in each transmission frame, limiting
the symbol rates of ambient backscatter modulations to be
higher than the OFDM frame rate. One possible solution is
to co-design the OFDM signal waveforms, namely synthesiz-
ing OFDM signals with a fixed bit sequence. This, however,
requires the backscatter communication system to be able to
access the OFDM core networks. On the receiver end, the
challenge is the detection of the existence of the extra added
ambient backscatter signals which in generally is extremely
weak compared with ambient OFDM signals. The synchro-
nization (in time, frequency, and phase) approaches need to
be further developed for various ambient backscatter commu-
nications. All these may require the firmware modification
so as to allow smartphone applications getting access of the
necessary raw signal characteristics.

IX. DISCUSSION

This section provides a discussion of the topics previously
presented. In addition, several of the limitations, potentials,
and some applications is discussed. Backscatter is a new
paradigm for IoT and sensor devices that has a battery as its
main limitation. Nevertheless, most of these sensors also re-
quire very high bit rates, which creates a challenging problem
for engineers. Some of the proposals presented in this paper
combine WPT with backscatter transceivers, this improves the
first problem, which is energy needs for IoT sensors, WPT is
an area of high interest in energy availability for IoT. Which
it is usually the limiting factor in coverage distance between a
base station and a sensor. So, WPT was presented as a way to
maintain a continuous flow of energy for these devices.

Regarding the high bit rate challenge, this paper also
presents some initiatives to increase the data rate. These in-
clude the use of higher order modulation backscatter solutions
and mm-wave backscatter devices with wideband scenarios.
The paper gives some insights into circuit approaches to max-
imize bandwidth availability. Another limiting factor is the
coverage range of these IoT sensors; this is also addressed by
looking at mm-wave options based on purposely conceived
circuits for passive Beamforming Networks.

In order to reduce even more the energy footprint of these
systems, Ambient Backscatter is a technology that reuses sig-
nals already existing in our everyday environment to reduce
the need for dedicated transmitters. Nevertheless, the sensi-
tivity of the receivers is low, which makes the communica-
tion range between the Backscatter tag and the receiver even
lower, and has lower data rates than other technologies. How-
ever, Ambient Backscatter systems can be beneficial from two
perspectives: First, they can reduce the need for energy for
a communication system to extremely low powers or even
passive. Second, they increase the capacity and reliability of
large wireless IoT networks, as presented in [72].
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In order to merge backscatter solutions with commercial
devices, this paper also addresses All-Digital Backscatter so-
lutions, where integrated systems can be connected directly to
an antenna, reducing the cost in the production of large wire-
less sensor networks and the need for additional components.
Connecting an antenna to an MCU can allow the transmission
of information by backscatter from any connected sensor.

In summary, feature IoT sensors will profit significantly by
using the technologies presented in this paper: WPT combi-
nation with backscatter, higher order modulation, specially
design passive Beamforming Networks and ambient reuse of
the spectra.

X. CONCLUSION

In this paper a summary of the more recent advancements
in physical layer and circuit manufacturing for backscatter
approaches were presented, it is expected that this paper can
be a source of motivation and initial background for the de-
velopment of backscatter approaches in IoT solutions.
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