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Abstract
This article proposes a frequency switchable microwave
resonator based on a microfluidic defected ground struc-
ture (m-DGS) that provides wider frequency tuning ratio.
Because its resonant frequency is determined from the
DGS geometry, the resonant frequency can be switched
by injecting EGaIn liquid metal into the m-DGS to
decrease the effective inductance and hence increase res-
onant frequency to 7.7 GHz from 3 GHz, that is, 88%
tuning range. The proposed idea is demonstrated numeri-
cally and experimentally.
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1 | INTRODUCTION

Defected ground structures (DGSs) have been used previously
for compact microwave resonators because inductive/capacitive
(LC) resonance can be generated from the slot on the ground
plane of the transmission line, and hence, additional space is not
required.1 The narrow and wide etched regions on the bottom
ground plane can enhance effective inductance and capacitance,
respectively. DGS resonators have also been used for various
microwave applications, such as low-pass filters, band-pass
filters, band-stop filters, antennas, and sensors.2–6 Various con-
figurations and devices have been proposed to provide multi-
functionality or tunable DGS based microwave circuits. For
example, a tunable band-stop DGS resonator was proposed by
loading varactor diodes on the dumbbell shaped defected gro-
und of the co-planar waveguide (CPW), achieving 19% tuning
range.7 A tunable band-pass filter was proposed by loading
varactor diodes and capacitors on the octagonal DGS, achieving
22.7% tuning range.8 A tunable band-pass filter was proposed
using micro-electric mechanical system (MEMS) series resis-
tive switches between the stub and ground plane,9 and a tunable
band-stop filter was proposed using DGS and MEMS switches,
achieving 36.5% tuning range.10 A compact tunable band-pass
filter using T-DGS and ceramic capacitor, achieving 47% tuning
range.11 A tunable WLAN-band-pass filter using varactor
device, achieving 23.3% tuning range.12

This article proposes a wide frequency switchable micro-
fluidic DGS (m-DGS). Because the DGS resonant frequency
can be determined from the DGS geometry, resonant frequency
switching can be achieved by injecting eutectic gallium indium
(EGaIn) liquid metal into the m-DGS to effectively decrease
inductance, hence increasing resonant frequency to 7.7 GHz
from 3 GHz, that is, 88% tuning range. The proposed concept
is numerically and experimentally demonstrated.

2 | DESIGN AND ANALYSIS OF THE
M-DGS RESONATOR

Figure 1a and b shows the layout and equivalent LC circuit
model, respectively, for a primitive DGS resonator. The small
microstrip line gap corresponds to the effective capacitance,
and the wide ground plane slot corresponds to the effective
inductance. Therefore, resonance frequency is dependent on
the LC resonator geometry of this LC resonator. Figure 1c and
d shows the proposed m-DGS to switch resonance frequency.
Two microfluidic channels are loaded on each slot of the
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ground plane to allow changing the effective inductance. When
the liquid metal is injected into the microfluidic channel, the
effective inductance will decrease, thereby increasing the reso-
nance frequency.

The DGS was built on 0.78 mm thick Rogers RT/duroid
5870 substrate with dielectric constant and tangential loss
2.33 and 0.0012, respectively. The microfluidic channel was
built from the polydimenthysiloxane (PDMS) material, and

it had dielectric constant and tangential loss 3 and 0.02,
respectively. Two substrates were combined by using the
bonding film, which had dielectric constant and tangential
loss = 3 and 0.05, respectively. The conductivity of liquid
metal is 3.4 × 106 S/m.

We used the ANSYS high frequency structure simulator
(HFSS) to design the proposed m-DGS resonator, with
geometry (Figure 1) final geometry: a2 = b2 = 4.1, c1 = 3,

FIGURE 1 (a) Primitive dumbbell shaped DGS resonators and (b) the equivalent LC circuit model; (c) bottom and (d) side views of the of the
proposed m-DGS [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Electric field distribution for the m-DGS resonator (a) without and (b) with liquid metal (3.3 and 8.1 GHz resonance, respectively)
[Color figure can be viewed at wileyonlinelibrary.com]
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p1 = 36, p2 = 26, h1 = 0.78, h2 = 0.05, h3 = 1, and
h4 = 0.85 (all parameters are millimeters).

Figure 2 shows the simulated electric field magnitude of
the proposed m-DGS resonator. The m-DGS without liquid
metal initially resonates at 3.3 GHz, and the microfluidic
channel does not contribute to this resonance. When liquid
metal is injected into the microfluidic channel, the m-DGS
resonates at 8.1 GHz. Figure 2b shows that the etched region
on the ground plane becomes smaller, effectively reducing
inductance.

3 | FABRICATION AND
MEASUREMENT

To demonstrate the proposed concept, we designed and fab-
ricated a typical m-DGS resonator, as shown in Figure 3.
The top view (Figure 3a) shows the 50-Ω microstrip line
fabricated on top of the Rogers RT/duroid 5870 substrate.
Figure 3b and c shows bottom views without and with liquid
metal, respectively. Dumbbell shaped slots were etched onto
the Rogers substrate and microfluidic channels built on the
PDMS, respectively. The microfluidic channels were con-
structed by laser etching. EGaIn was used as the liquid metal
because it has lower toxicity and significantly less mainte-
nance than mercury.

Figure 4a shows the simulated return loss (S11) of m-
DGS with liquid metal at different length of the microfluidic
channel (a2). It is observed that the resonant frequency is
decreased from 13 to 6 GHz by increasing a2 from 1.1 to
7.1 mm. It is because larger a2 corresponds to a larger slot
size of the DGS and larger inductance. Figure 4b shows the
simulated S11 of m-DGS with liquid metal at different width

FIGURE 3 Picture of the fabricated m-DGS resonator (a) top, and bottom (b) without and (c) with EGaIn liquid metal [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 Simulated return loss of m-DGS with liquid metal at
(a) different a2 and (b) c1 [Color figure can be viewed at
wileyonlinelibrary.com]
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of the microfluidic channel (c1). It is observed that the reso-
nant frequency is almost not changed and the amplitude is
slightly changed although c1 is varied. Therefore, we choose
c1 = 3 mm after considering reliable fabrication, minimum
amount of liquid metal, and smooth flow of liquid metal.

To see the effect of PDMS and bonding film, the proposed
m-DGS resonator without liquid metal is simulated. Figure 5a
and b shows the simulated insertion loss (S21) and return loss
(S11) of the m-DGS without liquid metal, respectively. It is
observed from Figure 5 that the resonant frequency is
decreased from 4.1 to 3.3 GHz after loading PDMS on the reso-
nator. It is because dielectric constant of PDMS is higher than
dielectric constant of RT/duroid substrate. However, the bond-
ing film does not affect S parameter because of its thin
thickness.

Figure 6a shows the proposed m-DGS resonator simulated
S parameters. Resonant frequency without EGaIn = 3.3 GHz
with −22 dB S21, which increased to 8.1 GHz with
−26 dB S21. Figure 6b shows the measured S-parameters of the

proposed m-DGS resonator. Before injecting EGaIn into the
microfluidic channel, resonant frequency is 3 GHz with
−26 dB S21. When EGaIn is injected, resonant frequency is
increased to 7.7 GHz with −28 dB S21. The slight frequency
difference is due to fabrication error in the microfluidic chan-
nels and PDMSmisalignment.

The tuning range can be expressed as

f 1− f 2
f 0

× 100 %ð Þ ð1Þ

where f1, f2, and f0 are the highest and lowest resonant fre-
quencies and center frequency, respectively. Therefore, the
proposed m-DGS resonator measured tuning ratio = 88%. In
Table 1, the performance of the proposed DGS resonator is
compared with that of other tunable DGS resonators. The
proposed resonator shows widest tuning range due to fluidic
switching mechanism. In addition, the insertion loss of the
proposed resonator is also lower than electrically tunable
resonators because of parasitic resistance from electronic
devices.

FIGURE 5 Simulated S parameters of m-DGS without liquid
metal to see the effect of the PDMS and bonding film: (a) insertion loss
and (b) return loss [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 6 (a) Simulated and (b) measured S parameters of the
proposed m-DGS resonator [Color figure can be viewed at
wileyonlinelibrary.com]
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4 | CONCLUSION

This article proposed a frequency switchable m-DGS res-
onator, and we demonstrated its performance numerically
and experimentally. The proposed resonator resonance
frequency increased from 3 to 7.7 GHz by injecting
EGaIn liquid metal into the microfluidic channels. Thus,
88% frequency tuning ratio was successfully achieved by
modifying DGS conductive patterns using the liquid
metal. Therefore, the proposed m-DGS resonator could
be suitable for microwave filters with wide tuning
capability.
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TABLE 1 Performance comparison of the proposed tunable DGS resonators with other tunable DGS resonators

Tuning
range (%)

Lowest
Freq. (GHz)

Highest
Freq. (GHz)

S-parameters at
lowest Freq. (dB)

S-parameters at
highest Freq. (dB)

Tuning mechanismS11 S21 S11 S21

7 19 3.35/6.7 4.05/8.1 3a/2a 12.5a/19a 2a/2a 23a/24a Varactor diode

8 22.7 4.3 5.4 15a 5 20a 3 Varactor diode

10 36.5 8.5 12.3 2.8 18a 2.3 24a MEMS

11 47 1.3 2.1 23a 0.5a 30a 0.5a Ceramic capacitor

12 23.3 2.87 3.63 20a 3.6 18a 2.1 Varactor device

Proposed work 88 3 7.7 0.85 26 0.97 28 Fluidic (Liquid metal)

a It is estimated from the graph.
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