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ABSTRACT | This paper presents a review of existing works and

solutions in the field of solar/electromagnetic energy harvest-

ing and wireless power transmission. More specifically, the

paper covers: solar/electromagnetic harvesters where solar

antenna structures are used to obtain a compact implementa-

tion, direct current (dc) combining circuits necessary to

combine the outputs of the solar and the electromagnetic

harvesters, and efficient solar-to-electromagnetic (EM) conver-

ters that can be used to synthesize autonomous wireless power

transmission radio-frequency (RF) signal generators. Finally,

novel topologies to minimize the sensitivity of rectifier circuits

to variations in the received RF power levels are presented.

KEYWORDS | Energy harvesting; rectenna; rectifier; resistance

compression network (RCN); solar energy

I . INTRODUCTION

In the recent years, there has been an increased interest in

providing autonomy and self-sustainability to devices and

sensors toward implementing concepts such as the

Internet of Things (IoT), smart cities, and smart environ-

ments in general [1]–[3]. Energy-harvesting technologies

appear as an alternative to provide this autonomy,

collecting energy from different types of sources such as

solar, thermal, kinetic, or electromagnetic (EM) and

converting it to direct current (dc) power. However, the

amount of available energy from theses sources is variable

and sometimes unpredictable which conditions the con-

version efficiency that can be obtained and the amount of
dc power that is available. In this context, the use of hybrid

energy harvesters, which can collect energy from more

than one energy source, seems a manner to overcome this

limitation. Several works have considered the use of hybrid

energy harvesters to obtain the required dc power to

operate certain platforms or devices [4]–[8], such as

solar/EM [4], [5], vibration/solar [6], solar/thermal [7],

and solar/thermal/vibration [8] hybrid harvesters.
In the case of EM energy harvesting, another measure

that can be taken into account to overcome the problem of

unpredictable power levels that may affect radio-frequency-

to-direct-current (RF–dc) conversion efficiency is to use

topologies in the rectifier circuits that minimize the effect

of these variations. Rectifier circuits are usually designed

to operate for specific conditions in terms of input power

level and loading conditions. Thus, a deviation from the
nominal operation results in degraded performance.

Although the rectifier is designed to operate efficiently

for a specific amount of harvested power, the available

power in the environment is variable. Such a change results

in impedance variation due to the nonlinear nature of the

rectifying devices. The same applies for the load variations.

As rectifiers are fundamental circuits for energy-harvesting

applications, their reduced sensitivity on the system
operating conditions will result in an improved perfor-

mance of the total harvester. In order to alleviate the

problem of impedance changes, special consideration
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should be paid for the design of the matching network
placed between the RF source and the diode.

A solution to reduce the load sensitivity of the rectifier

has been introduced in [9] where resistance compression

networks (RCNs) are used. These RCNs are used as

matching network in rectifier circuits, placed between the

input signal and the rectifying device. So far, RCNs that

operate at a single frequency have been proposed.

Since ambient energy is available in many frequency
bands, the design of multiband and broadband rectifiers is

of great importance. Thus, the design of RCNs operating at

different frequencies is a major challenge. Recently, the

concept of dual-band RCNs has been introduced [10].

Finally, the use of wireless power transmission can also

be considered in order to ensure enough dc power [11]–

[19]. An autonomous manner to achieve RF power

transmission is the use of solar-to-EM converters that
take available solar energy and use it to generate RF signals

to be used to power up sensors or devices that are equipped

with an EM energy harvester or rectifier circuit [17]–[19].

In this paper, all of these topics will be covered.

Section II shows several examples of solar/EM energy

harvesters, focusing on achieving a compact implementa-

tion by using solar antennas, and also the design of the dc

combining circuits necessary in any hybrid solar/EM
harvester. Section III focuses on solar-to-EM energy

converters for wireless power transmission. Finally,

Section IV covers the topic of sensitivity reduction in

rectifier circuits toward minimizing the effect that

variations in the available RF power or in the output

load may have on the RF–dc conversion efficiency.

II . HYBRID SOLAR/EM ENERGY
HARVESTING

EM harvesters are designed to achieve a certain RF–dc

conversion efficiency for a range of RF input power levels.

However, the levels of available EM energy in the

environment are variable and sometimes unpredictable,

which causes the RF–dc conversion efficiency to degrade,

and consequently the obtained dc power is insufficient.
An alternative to overcome this problem is the use of

hybrid energy harvesters where the energy from different

energy sources is collected. Then, the dc outputs of the

different harvesters are combined to provide the necessary

dc power. An example of this is the hybrid solar/EM

harvester [4], [5], where the energy is collected both from

solar energy by means of solar panels and from EM sources

by means of rectenna elements. In order to obtain a
compact design of these types of hybrid solar/EM harvest-

ers, the integration of the solar cells together with the EM

harvester antenna structure is of key importance.

A. Solar Antennas
In order to obtain a compact integration of the

hybrid solar/EM harvester it is possible to integrate the

solar panels on top of the radiating structure that will be
used in the EM harvester. It has been previously shown

[20]–[26] that it is possible to minimize the effect that

the solar cells have on the antenna performance by

properly selecting the position of the solar cells within

the antenna surface. If the solar panels are placed in

areas where the field distribution is weaker, the effect

they have can be minimized. This concept appeared first

in the field of satellites as a manner to reduce the size
of the satellite systems by integrating together the

antenna arrays and the solar panels [20], [21]. In [21],

an X-band solar reflectarray formed by cross-dipole

elements was developed where the radiating elements

were placed on top of the solar panels. A 2.2-GHz solar

patch antenna was proposed in [20], where the solar

cells were placed avoiding the edge of the patch

radiating element to minimize the effect of the solar
cell on the antenna performance. A wearable aperture

coupled shorted patch solar antenna operating in the

900-MHz industrial–scientific–medical (ISM) band was

presented in [22] where the dc connection of the solar

cells was placed on the side of the antenna where the

patch was shorted to minimize the effect these

connections may have on the antenna performance. In

[23], both linearly and circularly polarized solar slot
antennas were presented showing that the antenna

performance is preserved by properly placing the solar

cells avoiding the areas surrounding the slot where the

field distributions are stronger. In [24], two UWB solar

antennas operating in the 3.1–10.6-GHz frequency band

were designed to provide autonomy to a system of

wireless sensor nodes. Also in [25], a 3-D solar

omnidirectional antenna structure based on radiating
slots operating at 2.4 GHz was presented where the

solar cells are placed to avoid the area occupied by the

slots.

A broadband solar printed monopole antenna operating

from 800 MHz to 6 GHz (Fig. 1) was presented in [4] and

[5] to be used in a hybrid solar/EM energy harvester (see

Section II-B). The radiating structure was fabricated using

flexible polyethylene terephthalate (PET) substrate, and
the feed was implemented in coplanar waveguide (CPW)

technology. The selected solar cells were flexible thin film

amorphous silicon (a-Si) solar cells (Power Film SP3-37)

with open circuit voltage of VOC ¼ 4.1 V and short circuit

current of ISC ¼ 28 mA, when illuminated by the standard

global solar irradiance spectrum corresponding to air mass

1.5 (AM1.5 G) also known as 1 sun ¼ 100 mW/cm2. Their

location on the antenna surface was selected by means of
electromagnetic simulations in order to select the areas of

the antenna where the field distributions were weaker

targeting to minimize the effect of the solar cell on the

antenna performance. Fig. 1(b) shows the measured

results of the fabricated antenna structure of Fig. 1(a)

showing that the input matching of the antenna is not

affected by the solar cell presence. The gain of the antenna
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is only slightly affected by the presence of the solar cell,

and the main effect is an increase in the cross-polarization

levels [4].

The work in [26] showed a substrate integrated

waveguide (SIW) solar cavity-backed slot antenna

(Fig. 2) that was used as part of a hybrid solar/EM

harvester to power up a sensor platform. In this work, a-Si

solar cells are placed avoiding covering the area surround-
ing the slot in order to reduce the effect on the antenna

performance.

B. DC Combining Circuits for Hybrid Harvesters
One of the key components toward designing and

implementing hybrid energy harvesters is the dc combin-

ing circuits that are required to add up the obtained dc

outputs from the different harvesting units.

Several works [27]–[29] have shown different alter-

natives to combine the dc outputs focusing mainly on the

combination of rectenna dc outputs. In [27], a reconfigur-

able dc combining circuit is presented that aims to
combine either in series or parallel the dc outputs of

rectenna array elements. This work also shows the

importance of considering the variation in the optimum

output load to be used attending to the dc combining

circuit configuration and how this can affect the rectifi-

cation efficiency. Also, in [28] and [29], the authors

demonstrated the degradation that the combined dc

outputs can suffer when connecting unequal rectenna
elements and how by properly selecting the connection

scheme this degradation can be minimized.

In [26], a dc combining circuit that combines the dc

outputs in a hybrid solar/EM energy harvester is presented.

This dc combining circuit integrates both a 2.45-GHz

RF–dc converter necessary for the EM harvester and the

additional circuitry required to combine the output of

the solar cells and the output of the EM harvester. The
schematic of the proposed dc combining circuit is shown

in Fig. 3.

Depending on the solar irradiance values, the loading

effect that the solar cells have on the dc combining circuit

varies. This variation produces changes in the input

matching of the complete dc combining circuit. As the

dc combining circuit includes the RF–dc converter for the

EM harvester, these variations in the input matching are
undesirable as they affect the RF–dc conversion efficiency

that can be obtained. The combining circuit is designed

aiming at minimizing the variations in the input matching

under changing conditions of irradiance, by using two

parallel rectification branches.

Fig. 4 shows the measured dc output voltage of the

combining circuit for different irradiance values and for

two different RF input power levels (0 and �3 dBm). For

Fig. 2. SIW solar cavity-backed slot antenna (after [26]). Fig. 3. Schematic of the dc combining circuit after [26].

Fig. 1. (a) UWB printed monopole solar antenna. (b) Input matching of

the UWB solar antenna. After [4] and [5].
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ambient light conditions (low irradiance values) the effect

of increasing the RF input power level can be clearly seen

and the contribution of the EM harvester to the dc output

is comparable to that of the solar cells. However, in the

case of higher irradiance conditions, the main contribution

to the dc voltage comes from the solar cells and the

increase in the RF input power level does not significantly
reflect in the obtained dc voltage. These results show that

for low RF input power levels the use of the hybrid solar/

EM is more suitable under low irradiance conditions,

while if the irradiance is high, the hybrid harvester could

just be operated as a solar harvester.

C. Hybrid Solar/EM Energy Harvesters
The efficiency of the hybrid solar/EM harvester in [26]

when operating simultaneously with an RF input signal

and considering that the solar cells are illuminated is

evaluated using

� ¼ 100
Pdc

ðPRF þ PsolarÞ
(1)

where Pdc is the output dc power of the dc combining

circuit, PRF refers to the RF input power level, and Psolar is

the dc power obtained from the solar cells. This Psolar is

calculated by measuring the voltage drop at the solar cell

terminal and the current passing through it considering

different irradiance conditions and different levels of RF

input power.
In Fig. 5, the measured combined dc output power and

efficiency for different operation conditions in terms of

irradiance and RF input power levels (2.45 GHz) are

presented. As expected, when both solar and EM energies

are present, it is possible to obtain higher values of dc

output power. However, the dc combining circuit

efficiency is better for higher values of irradiance and no

RF signal present. As also shown in Fig. 4, the harvester

should operate in the hybrid solar/EM mode only when

there is not enough light and there is a demand of dc

power. However, if there is enough light, it is more

efficient to only operate in the solar harvester mode.

Another example of a solar/EM harvester design was

presented in [4] and [5]. The proposed harvester (Fig. 6)
is a dual-band hybrid solar/EM energy harvester that uses

the solar antenna in Fig. 1 and that harvests RF signals in

the GSM-850 and GSM-1900 frequency bands. The

complete harvester is implemented in PET substrate,

which together with the flexible a-Si solar cell allows

achieving a conformal harvesting structure. The harvester

is designed to maximize the RF–dc conversion efficiency

in the two frequency bands (850 and 1850 MHz)
obtaining efficiency values around 15% for �20-dBm

input power levels.

The performance of the EM harvester is evaluated for

different illumination conditions of the solar cells. Results

in terms of obtained output dc voltage from the EM

harvester for irradiance values of approximately 1000 W/m2

(1000 W/m2 ¼ 100 mW/cm2 ¼ 1 sun equivalent value) and

150 W/m2 are shown in Fig. 7. The measurements were
obtained for an outdoor setup where the harvester was under

direct sunlight (1000 W/m2) and in the shade (150 W/m2).

The values of the irradiance were measured using a solar

Fig. 4. Output dc voltage measured when operating the dc combining

circuit simultaneously with an RF input signal and with the solar

cells illuminated.

Fig. 5. Measured dc combining circuit performance versus

irradiance and for different RF input power levels (2.45 GHz).

(a) Output dc power. (b) Efficiency calculated using (1).
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radiation meter. The solar cell open circuit voltage and the

short circuit current for this two values of irradiance were

Voc ¼ 4:06 V=Isc ¼ 23.2 mA and Voc ¼ 3:90 V=Isc ¼
4.3 mA, respectively.

III . SOLAR-TO-EM ENERGY
CONVERSION

As was already mentioned, solar energy can provide higher

levels of harvested dc power if compared to EM sources.

This fact can be used to obtain additional sources of EM

signals when there is availability of solar light but limited

EM signals in the environment.

The idea of solar-to-EM energy conversion has been
broadly covered in the field of solar power satellites [11]–

[16] aiming at collecting solar energy by means of large
solar panels integrated on satellites in orbit and then

convert it to EM energy that can then be radiated to Earth

or to other satellites where it can be converted back to dc.

On a smaller scale, it is possible to use solar-to-EM

converters to generate EM signals that can be used as RF

generators for wireless power transmission applications.

Solar-to-EM converters take solar energy by means of solar

panels and use the obtained dc power to generate EM
signals by powering up certain frequency generation

circuits such as oscillators.

In [17], a solar-to-EM converter based on a class-E

oscillator was presented (Fig. 8). Amorphous silicon (a-Si)

solar cells (Power Film SP3-37) were used to capture the

solar energy and provide the necessary dc power to start up

a high-efficiency 905-MHz class-E oscillator. The gener-

ated 905-MHz signal was then transmitted by means of a
monopole antenna.

The converter design was optimized for low illumina-

tion conditions by connecting three pieces of the SP-37

solar cells in parallel to maximize the generated currents.

The created solar cell module has an open circuit voltage of

1.7 V and a short circuit current of 84 mA under 1 sun

irradiance. The measured dc–RF efficiency was of

approximately 43% when the oscillator was biased at
Vc ¼ 1.5 V and I ¼ 3.2 mA.

The dc–RF efficiency was calculated using

�dc�RF ¼ 100
PRF

Pdc
(2)

where PRF is the RF output power of the oscillator circuit

and Pdc ¼ Vc � Ic.

In [18] and [19], a solar-to-EM converter was presented

(Fig. 9), where the radiating element is a coplanar

Fig. 7. Obtained dc voltage from the EM harvester when the solar cells

are illuminated.

Fig. 6. Dual-band solar/EM energy harvester (after [4] and [5]).

Fig. 8. Solar-to-EM converter at 905 MHz after [17].
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waveguide-fed triple-slot structure with a shorting strip

that allows for size reduction.

The solar energy is collected by means of two halves of
an a-Si solar panel, each half having approximately 4 V of

open circuit voltage and 13 mA of short circuit current.

The solar cells are placed on the ground plane avoiding the

sensitive antenna areas to avoid affecting its performance.

The obtained dc voltage from the solar cells is used to

power up an oscillator circuit in the 900-MHz frequency

band that requires 1.5 V of drain voltage with 6-mA current

to operate. A linear LT1763-1.5 regulator is used to deliver
a stable supply voltage to the oscillating circuitry. The

regulator takes at its input a minimum voltage of 1.8 V,

providing at its output a fixed 1.5-V voltage and can

provide up to 500 mA of current with 300-mV dropout

voltage. The solar cells are connected to the regulator

input through two Schottky diodes (Skyworks SMS7630-

079LF) in order to isolate them and minimize the effect of

imbalances between them in terms of provided voltage.
Two versions of the solar-to-EM converter were

proposed in [18] and [19], where one of them was

implemented in PET substrate by using a conventional

milling fabrication process and the second one was inkjet

printed on paper substrate.

IV. RESISTANCE COMPRESSION
NETWORKS

In [9], rectifier circuits that achieve a reduced sensitivity

to load and input power variations have been introduced.

These circuits are based on the so-called RCNs [9]. An

RCN is formed by two branches that exhibit opposite phase

responses (� and ��, respectively) at the operating

frequency [Fig. 10(a)]. Under these phase conditions, the

input impedance of the RCN ðZinÞ suffers small variations
under large variations of the real load values ðRLÞ.

In rectifier circuits, changes in the output load or

changes in the input power produce changes in the input

matching of the rectifying device (usually a Schottky

diode). These changes in the input matching can produce

degradation on the circuit performance. RCN can be used

as the matching network in rectifier circuits. If properly

designed, these networks are able to achieve resistance
compression and additionally impedance transformation.

So far, different implementations of RCNs according to

the application scenario and/or the desired frequency have

been reported [9], [30].

The concept of resistance compression has already

been applied to the design of electronic circuits operating

at low RF and microwave frequencies. In [9], an RCN is

applied for the design of a 100-MHz dc–dc converter
demonstrating the reduced load sensitivity of resonant dc–

dc converters. A high-efficiency resonant dc–dc converter

based on an RCN is also presented in [31]. The isolation

resistor of a matched combiner has been replaced by a

Fig. 9. CPW folded slot solar-to-EM converter: (a) PET implementation;

(b) inkjet printed on photopaper implementation (after [18]

and [19]).

Fig. 10. RCN topologies: (a) single-frequency RCN with real load;

(b) single-frequency RCN-based rectifier; and (c) dual-frequency

RCN-based rectifier.
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rectifier based on RCNs in [32]. Also, the resistance-

compressed rectifier can contribute to the high efficiency

and linearity of an outphasing energy recovery system, as

shown in [33], where a transmission-line-based impedance

compression network (ICN) is presented. The ICN is

applied for the design of a harmonically terminated

rectifier operating at 4.6 GHz [33]. The circuit is

implemented with and without ICN in order to demon-
strate the improved performance obtained with ICN in an

outphasing system.

A. Dual-Band RCNs
As stated before, the operating principle of an RCN is

that equal and opposite phase responses (� and ��) are

present in each of the branches that form an RCN at a

certain operating frequency. This way large variations in

the load RL do not produce large variations in the input

matching ðZinÞ of the circuit [9], due to the compression

performed by the RCN [Fig. 10(a)]. The desired compres-

sion is usually achieved using one capacitor ðCÞ and one
inductor ðLÞ for each of the branches. When operating at

the resonant frequency ð! ¼
ffiffiffiffiffiffiffi

LC
p

Þ, the input impedance

of the network ðZinÞ varies a small amount for large

variation of RL [9].

In the case of a rectifier circuit,RL is substituted by ZL

that corresponds to the input impedance of the rectifying

device [Fig. 10(b)]. Additionally, if dual-band resistance

compression is desired, the structure shown in Fig. 10(c)
can be applied [10]. The goal for the design of the dual-

band RCNs is that equal and opposite phase responses

(��1 and �1=�2 and ��2) are met at the two branches

when the circuit operates at each of the frequencies f 1 and

f 2. A dual-band network that fulfills the previously

mentioned requirements is in the inductor/capacitor

(LC) structure shown in Fig. 11 [34].

The LC network [Fig. 11(a)] and the rearranged LC

network [Fig. 11(b)] exhibit a dual-band frequency

response at the frequencies f 1 and f 2, where f 1 G f 2. When

the network in Fig. 11(a) operates at f 1, the series

inductance ðLRÞ and shunt capacitance ðCRÞ tend to be

Fig. 11. LC networks that exhibit equal but opposite phase response

at the two operating frequencies: (a) conventional topology; and

(b) rearranged network.

Table 1 Phase Characteristics of the Unit Cells Shown in Fig. 11

Fig. 12. Schematic of the two designed rectifiers: (a) RCN-based

dual-band rectifier; and (b) envelope detector rectifier.

Fig. 13. Simulated RF–dc conversion efficiency of the

915-MHz/2.45-GHz RCN-based rectifier and the 915-MHz/2.45-GHz

envelope detector rectifier. (a) RF–dc conversion efficiency

versus output load (Pin ¼ 0 dBm). (b) RF–dc conversion efficiency

versus input power (RL ¼ 1 k4).
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short and open, respectively. Likewise, when operating at

the high frequency f 2, the series capacitance ðCLÞ and

shunt inductance ðLLÞ tend to be short and open,
respectively.

The most important feature of this structure is the

phase response that is achieved at the desired frequencies.

In particular, the LC network in Fig. 11(a) has a negative

phase ð��1Þ for the low operating frequency ðf 1Þ and a

positive phase response ð�2Þ for f 2. The rearranged unit

cell of Fig. 11(b) depicts equal but opposite phase

responses at the two frequencies. Table 1 summarizes
the phase response of the unit cells.

Taking advantage of the phase properties of the unit

cells, a dual-band RCN can be designed at f 1 and f 2. As an

example application, a dual-band resistance-compressed

rectifier for energy-harvesting applications is designed and

Fig. 14. Fabricated prototype of the RCN-based 915-MHz/2.45-GHz

dual-band rectifier (after [10]).

Fig. 15. Simulated and measured RF–dc conversion efficiency versus

frequency for an input power of �15 dBm and 1-k 4 output load.

Fig. 16. Simulated and measured results for the RCN-based dual-band

rectifier. (a) RF–dc conversion efficiency versus input power.

(b) RF–dc conversion efficiency versus output load. (c) Output dc

voltage versus input power. (d) Output dc voltage versus output load.
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evaluated [10]. Two unit cells are used as the impedance
matching network that compresses the resistance varia-

tion between the diode of the rectifier and the input

signal. The selected frequencies for this application

example are 915 MHz and 2.45 GHz.

B. Performance Results
An RCN-based dual-band (915 MHz/2.45 GHz) recti-

fier is designed and experimentally validated in [10].
Fig. 12(a) shows the schematic of the designed rectifier

with a two diode topology. The SMS7630 Schottky diode is

used for the current design. Two identical LC networks

[Fig. 11(a)] are used at the upper branch, and two identical

rearranged LC networks [Fig. 11(b)] are placed at the

lower branch in order to exhibit the appropriate phase

response at f 1 and f 2. For this design, two LC sections such

as the ones in Fig. 11 have been used in each of the
branches in order to provide more flexibility during the

design phase. The rectifier circuit is designed to be

matched to a 50-� source. The circuit is designed using

harmonic balance (HB) and large signal scattering

parameter (LSSP) analysis in Agilent ADS software.

Optimization goals are imposed in order to achieve the

impedance matching and to maximize the RF–dc conver-

sion efficiency of the circuit.
The optimization process resulted in the following

component values for each LC unit cell: LR ¼ 8.7 nH,

CL ¼ 27 pF, CR ¼ 0.8 pF, and LL ¼ 100 nH. The shunt

capacitance of 0.8 pF is implemented as a radial stub. The

selected chip inductors and capacitors are from Coilcraft

(the United States) and Murata (Japan), respectively. The

selected optimum output load is 1 k�. The prototype is

fabricated in Arlon 25N substrate (30 mil) with a relative
permittivity of 3.38 and loss tangent of 0.0025.

The performance of the designed RCN-based rectifier

is compared to that of a conventional dual-band rectifier

based on an envelope detector topology (Fig. 12) and using

the same Schottky diode SMS7630. Both circuits are

optimized for maximum RF–dc conversion efficiency at

915 MHz and 2.45 GHz. A comparison of the proposed

rectifier with the conventional approach is presented in
Fig. 13. An efficiency improvement in the RCN-based

rectifier can be observed as well as less variation in the

efficiency versus load and input power variations.

The final implemented prototype of the RCN-based

rectifier is shown in Fig. 14. The simulated and measured

RF–dc conversion efficiency of this dual-band rectifier for

an input power of�15 dBm and an output load of 1 k� is

illustrated in Fig. 15, demonstrating a good match between
simulation and measurements. Fig. 16 shows the RF–dc

conversion efficiency and the output dc voltage of the

implemented circuit versus input power and versus output

load variations, at the two frequencies with peak measured

efficiencies in Fig. 15, to demonstrate that the RCN allows

reducing the effect of these two parameters on the circuit

performance. In Fig. 16, the simulations for the RF–dc

conversion efficiency versus input power are not included
due to inaccuracies in the diode model for high input

power levels.

V. CONCLUSION

This paper covers the topic of hybrid solar/EM energy

harvesting, where both solar and electromagnetic energy

sources are considered, for its use in environments or
applications where the levels of available energy are

variable or unpredictable. As a manner to create compact

solar/EM harvesters, the use of solar antennas where the

solar panels share the same area as the radiating element is

of key importance. Several examples of solar antennas and

solar/EM harvesters are presented in this paper. Examples

of the required dc combining circuits in hybrid energy

harvesters to combine the dc outputs for the different
harvesting units are also discussed.

Additionally, solar-to-EM converters where solar en-

ergy is used to power up frequency generation circuits that

synthesize EM signals to be used as wireless power

transmitters are covered in this paper, as well as the use of

rectifier topologies that minimize their sensitivity to input

power and load variations based on the use of RCN. h

REF ERENCE S

[1] W. C. Brown, ‘‘The history of power
transmission by radio waves,’’ IEEE Trans.
Microw. Theory Tech., vol. 32, no. 9,
pp. 1230–1242, Sep. 1984.

[2] J. A. Hagerty, F. B. Helmbrecht,
W. H. McCalpin, R. Zane, and Z. B. Popovic,
‘‘Recycling ambient microwave energy with
broadband rectenna arrays,’’ IEEE Trans.
Microw. Theory Tech., vol. 52, no. 3,
pp. 1014–1024, Mar. 2004.

[3] N. Bui, A. Georgiadis, M. Miozzo, M. Rossi,
and X. Vilajosana, ‘‘SWAP project: Beyond the
state of the art on harvested energy-powered
wireless sensors platform design,’’ in Proc.
IEEE 8th Int. Conf. Mobile Adhoc Sensor Syst.,
Oct. 17–22, 2011, pp. 837–842.

[4] A. Georgiadis, A. Collado, S. Via, and
C. Meneses, ‘‘Flexible hybrid energy harvester
for autonomous sensors,’’ in Proc. IEEE MTT-S

Int. Microw. Symp., Jun. 5–10, 2011, DOI: 10.
1109/MWSYM.2011.5972963.

[5] A. Collado and A. Georgiadis, ‘‘Conformal
hybrid solar and electromagnetic (EM) energy
harvesting rectenna,’’ IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 60, no. 8, pp. 2225–2234,
Aug. 2013.

[6] Y. K. Tan and S. K. Panda, ‘‘Energy harvesting
from hybrid indoor ambient light and thermal
energy sources for enhanced performance of
wireless sensor nodes,’’ IEEE Trans. Ind.
Electron., vol. 58, no. 9, pp. 4424–4435,
Sep. 2011.

[7] J. Colomer et al., ‘‘Novel autonomous low
power VLSI system powered by ambient
mechanical vibrations and solar cells for
portable applications in a 0.13� technology,’’
in Proc. IEEE Power Electron. Specialists Conf.,
Jun. 17–21, 2007, pp. 2786–2791.

[8] S. Bandyopadhyay and A. P. Chandrakasan,
‘‘Platform architecture for solar, thermal,

vibration energy combining with MPPT and
single inductor,’’ IEEE J. Solid-State Circuits,
vol. 47, no. 9, pp. 2199–2215, Sep. 2012.

[9] H. Yehui, O. Leitermann, D. A. Jackson,
J. M. Rivas, and D. J. Perreault, ‘‘Resistance
compression networks for radio-frequency
power conversion,’’ IEEE Trans. Power
Electron., vol. 22, no. 1, pp. 41–53, Jan. 2007.

[10] K. Niotaki, A. Georgiadis, and A. Collado,
‘‘Dual-band rectifier based on resistance
compression networks,’’ in Proc. IEEE MTT-S
Int. Microw. Symp., Jun. 1–6, 2014, DOI: 10.
1109/MWSYM.2014.6848438.

[11] P. E. Glaser, ‘‘Power from the sun,’’ Science,
no. 162, pp. 857–886, 1968.

[12] W. C. Brown, ‘‘Status of the microwave power
transmission components for the solar
power satellite,’’ IEEE Trans. Microw. Theory
Tech., vol. 29, pp. 1319–1327, Dec. 1981.

Niotaki et al. : Solar/Electromagnetic Energy Harvesting and Wireless Power Transmission

1720 Proceedings of the IEEE | Vol. 102, No. 11, November 2014



[13] U.S. Patent and Trademark Office, ‘‘Solar
power satellite patent,’’ Jun. 2009. [Online].
Available: patft.uspto.gov.

[14] H. Matsumoto, ‘‘Research on solar power
satellites and microwave power transmission
in Japan,’’ IEEE Microw. Mag., vol. 3, no. 4,
pp. 36–45, Dec. 2002.

[15] S. Sasaki and K. Tanaka, Advanced Mission
Research Group, ‘‘Wireless power
transmission technologies for solar power
satellite,’’ in Proc. IEEE MTT-S Int. Microw.
Workshop Ser. Innovative Wireless Power
Transm., Technol. Syst. Appl., 2011, pp. 3–6.

[16] J. O. McSpadden and J. C. Mankins, ‘‘Space
solar power programs and microwave
wireless power transmission technology,’’
IEEE Microw. Mag., vol. 3, no. 4, pp. 46–57,
Dec. 2002.

[17] A. Georgiadis and A. Collado, ‘‘Solar powered
class-e active antenna oscillator for wireless
power transmission,’’ in Proc. IEEE Radio
Wireless Symp., Jan. 20–23, 2013, pp. 40–42.

[18] F. Giuppi et al., ‘‘A 927 MHz solar powered
active antenna oscillator beacon signal
generator,’’ in Proc. IEEE Top. Conf. Wireless
Sensors Sensor Netw., Jan. 15–19, 2012, DOI:
10.1109/WiSNet.2012.6172144.

[19] A. Georgiadis, A. Collado, S. Kim, H. Lee, and
M. M. Tentzeris, ‘‘UHF solar powered active
oscillator antenna on low cost flexible
substrate for wireless identification
application,’’ in IEEE MTT-S Microw. Symp.
Dig., Jun. 17–22, 2012, DOI: 10.1109/
MWSYM.2012.6259643.

[20] M. Tanaka, R. Suzuki, Y. Suzuki, and K. Araki,
‘‘Microstrip antenna with solar cells for

microsatellites,’’ in Proc. IEEE Int. Symp.
Antennas Propag., Jun. 20–24, 1994, vol. 2,
pp. 786–789.

[21] M. Zawadzki and J. Huang, ‘‘Integrated RF
antenna and solar array for spacecraft
application,’’ in Proc. IEEE Int. Conf. Phased
Array Syst. Technol., May 2000, pp. 239–242.

[22] F. Declercq, A. Georgiadis, and H. Rogier,
‘‘Wearable aperture-coupled shorted solar
patch antenna for remote tracking and
monitoring applications,’’ in Proc. 5th Eur.
Conf. Antennas Propag., Apr. 11–15, 2011,
pp. 2992–2996.

[23] S. Vaccaro, J. R. Mosig, and P. de Maagt, ‘‘Two
advanced solar antenna ‘SOLANT’ designs for
satellite and terrestrial communications,’’
IEEE Trans. Antennas Propag., vol. 51, no. 8,
pp. 2028–2034, Aug. 2003.

[24] M. Danesh and J. R. Long, ‘‘Photovoltaic
antennas for autonomous wireless systems,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 58, no. 12, pp. 807–811, Dec. 2011.

[25] T. Wu, L. RongLin, and M. M. Tentzeris,
‘‘A scalable solar antenna for autonomous
integrated wireless sensor nodes,’’ IEEE
Antennas Wireless Propag. Lett., vol. 10,
pp. 510–513, 2011.

[26] K. Niotaki, F. Giuppi, A. Georgiadis, and
A. Collado, ‘‘Energy harvester for
autonomous operation of a monitoring sensor
platform,’’ Wireless Power Transfer, vol. 1,
no. 1, pp. 44–50, Mar. 2014, DOI: 10.1017/
wpt.2014.6.

[27] Z. Popovic et al., ‘‘Scalable RF energy
harvesting,’’ IEEE Trans. Microw. Theory Tech.,
vol. 62, no. 4, pp. 1046–1056, Apr. 2014.

[28] N. Shinohara and H. Matsumoto,
‘‘Dependence of DC output of a rectenna array
on the method of interconnection of its
array elements,’’ Electr. Eng. Jpn., vol. 125,
no. 1, pp. 9–17, 1998.

[29] R. J. Gutmann and J. M. Borrego, ‘‘Power
combining in an array of microwave power
rectifiers,’’ IEEE Trans. Microw. Theory Tech.,
vol. MTT-27, no. 12, pp. 958–968, Dec. 1979.

[30] J. F. Xu, W. Tai, and D. S. Ricketts,
‘‘A transmission line based resistance
compression network (TRCN) for microwave
applications,’’ in Proc. Int. Microw. Symp.,
2013, DOI: 10.1109/MWSYM.2013.6697683.

[31] W. Inam, K. K. Afridi, and D. J. Perreault,
‘‘High efficiency resonant dc/dc converter
utilizing a resistance compression network,’’
IEEE Trans. Power Electron., vol. 29, no. 8,
pp. 4126–4135, Aug. 2014.

[32] P. A. Godoy, D. J. Perreault, and J. L. Dawson,
‘‘Outphasing energy recovery amplifier with
resistance compression for improved
efficiency,’’ IEEE Trans. Microw. Theory Tech.,
vol. 57, no. 12, pp. 2895–2906, Dec. 2009.

[33] X. Junfeng and D. S. Ricketts, ‘‘An efficient,
watt-level microwave rectifier using an
impedance compression network (ICN) with
applications in outphasing energy recovery
systems,’’ IEEE Microw. Wireless Compon. Lett.,
vol. 23, no. 10, pp. 542–544, Oct. 2013.

[34] C. Caloz and T. Itoh, Electromagnetic
Metamaterials: Transmission Line Theory and
Microwave Applications. Hoboken, NJ, USA:
Wiley, 2006.

ABOUT T HE AUTHO RS

Kyriaki Niotaki (Student Member, IEEE) was born

in Crete, Greece. She received the B.S. degree in

informatics and the M.S. degree in electronic

physics with specialization in electronic telecom-

munication technology, both from Aristotle Uni-

versity of Thessaloniki, Thessaloniki, Greece, in

2009 and 2011, respectively. Currently, she is

working toward the Ph.D. degree in the Signal

Theory and Communications Department, Techni-

cal University of Catalonia (UPC), Barcelona, Spain.

Since December 2011, she has been with the Technological Tele-

communications Center of Catalonia (CTTC), Barcelona, Spain, as a

Research Assistant. Her main research interests include energy-

harvesting solutions and the design of power amplifiers.

Ms. Niotaki was the recipient of an IEEE Microwave Theory and

Techniques Society (IEEE MTT-S) Graduate Fellowship Award in 2014.

Ana Collado (Senior Member, IEEE) received the

M.Sc. and Ph.D. degrees in telecommunications

engineering from the University of Cantabria,

Santander, Cantabria, Spain, in 2002 and 2007,

respectively.

She is currently a Senior Research Associate

and the Project Management Coordinator at the

Technological Telecommunications Center of Cat-

alonia (CTTC), Barcelona, Spain, where she per-

forms her professional activities. She has

participated in several national and international research projects and

has coauthored over 70 papers in journals and conferences. Among her

activities she has collaborated in the organization of several international

workshops in different countries of the European Union and also a

Training School for Ph.D. students. She was a Marie Curie Fellow of the

FP7 project Symbiotic Wireless Autonomous Powered system (SWAP).

Her professional interests include active antennas, substrate integrated

waveguide structures, nonlinear circuit design, and energy-harvesting

and wireless power transmission (WPT) solutions for self-sustainable and

energy-efficient systems.

Dr. Collado serves on the Editorial Board of the Radioengineering

Journal, and she is currently an Associate Editor of the IEEE MICROWAVE

MAGAZINE and a member of IEEE MTT-26 Wireless Energy Transfer and

Conversion and MTT-24 RFID Technologies.

Apostolos Georgiadis (Senior Member, IEEE) was

born in Thessaloniki, Greece. He received the B.S.

degree in physics and the M.S. degree in tele-

communications from the Aristotle University of

Thessaloniki, Thessaloniki, Greece, in 1993 and

1996, respectively, and the Ph.D. degree in elec-

trical engineering from the University of Massa-

chusetts at Amherst, Amherst, MA, USA, in 2002.

In 1995, he spent a semester with Radio Antenna

Communications (RAC), Milan, Italy. In 2000, he

spent three months with Telaxis Communications, South Deerfield, MA,

USA. In 2002, he joined Global Communications Devices (GCD), North

Andover, MA, USA, where he was a Systems Engineer involved with CMOS

transceivers for wireless network applications. In June 2003, he was with

Bermai Inc., Minnetonka, MN, USA, where he was an RF/Analog Systems

Architect. In 2005, he joined the University of Cantabria, Santander,

Cantabria, Spain, as a Researcher. He is currently a Senior Research

Associate and Group Leader of the Microwave Systems and Nanotechnol-

ogy Department, Technological Telecommunications Center of Catalonia

(CTTC), Barcelona, Spain, in the Communication Technologies Division,

where he is involved in active antennas and antenna arrays and more

recently with RFID technology and energy harvesting.

Dr. Georgiadis was the recipient of a 1996 Fulbright Scholarship for

graduate studies with the University of Massachusetts at Amherst; the

1997 and 1998 Outstanding Teaching Assistant Award presented by the

University of Massachusetts at Amherst; the 1999 and 2000 Eugene M.

Niotaki et al. : Solar/Electromagnetic Energy Harvesting and Wireless Power Transmission

Vol. 102, No. 11, November 2014 | Proceedings of the IEEE 1721



Isenberg Award presented by the Isenberg School of Management,

University of Massachusetts at Amherst; and the 2004 Juan de la Cierva

Fellowship presented by the Spanish Ministry of Education and Science.

He is involved in a number of technical program committees and serves

as a reviewer for several journals including the IEEE TRANSACTIONS ON

ANTENNAS AND PROPAGATION and the IEEE TRANSACTIONS ON MICROWAVE

THEORY AND TECHNIQUES. He was the corecipient of the EUCAP 2010 Best

Student Paper Award and the ACES 2010 2nd Best Student Paper Award.

He was the Chairman of COST Action IC0803, RF/Microwave communi-

cation subsystems for emerging wireless technologies (RFCSET), and the

Coordinator of Marie Curie Industry–Academia Pathways and Partner-

ships project Symbiotic Wireless Autonomous Powered (SWAP) system.

He is a member of the IEEE MTT-S TC-24 RFID Technologies (Chair 2012–

2014) and a member of IEEE MTT-S TC-26 Wireless Energy Transfer and

Conversion. He serves on the Editorial Board of the Radioengineering

Journal and as an Associate Editor of the IEEE MICROWAVE AND WIRELESS

COMPONENTS LETTERS and IET Microwaves Antennas and Propagation

Journal. He is the Editor-in-Chief of Wireless Power Transfer.

Sangkil Kim (Student Member, IEEE) received the

B.S. degree in electrical and electronic engineer-

ing from Yonsei University, Seoul, Korea, in 2010,

and the M.S. and Ph.D. degrees in electrical

engineering from Georgia Institute of Technology,

Atlanta, GA, USA, in 2012 and in 2014, respectively.

He visited King Abdullah University of Science

and Technology, Thuwal, Saudi Arabia, in 2013; the

Technological Telecommunications Center of Cat-

alonia (CTTC), Barcelona, Spain, in 2013; and

CNRS–LAAS, Toulous, France, in 2013, as a visiting scholar. He is currently

working on the design and fabrication of printed RF energy-harvesting-

enabled low-power sensor platform.

Manos M. Tentzeris (Fellow, IEEE) received the

Diploma degree in electrical and computer engi-

neering (magna cum laude) from the National

Technical University of Athens, Athens, Greece, in

1992 and the M.S. and Ph.D. degrees in electrical

engineering and computer science from the Uni-

versity of Michigan, Ann Arbor, MI, USA, in 1993

and 1998, respectively.

He is currently a Professor with the School of

Electrical and Computer Engineering, Georgia

Institute of Technology, Atlanta, GA, USA. He has published more than

480 papers in refereed journals and conference proceedings, five books,

and 19 book chapters. He has helped develop academic programs in

highly integrated/multilayer packaging for RF and wireless applications

using ceramic and organic flexible materials, paper-based RFIDs and

sensors, biosensors, wearable electronics, inkjet-printed electronics,

‘‘green’’ electronics and power scavenging, nanotechnology applica-

tions in RF, microwave MEMs, SOP-integrated (UWB, multiband, mmW,

conformal) antennas, and heads the ATHENA research group (20

researchers). He is currently the Head of the GT–ECE Electromagnetics

Technical Interest Group, and he has served as the Georgia Electronic

Design Center Associate Director for RFID/Sensors research from 2006

to 2010 and as the Georgia Tech NSF-Packaging Research Center

Associate Director for RF Research and the RF Alliance Leader from

2003 to 2006. He was a Visiting Professor with the Technical

University of Munich, Munich, Germany, during summer 2002; a

Visiting Professor with GTRI-Ireland, Athlone, Ireland, during summer

2009; and a Visiting Professor with LAAS–CNRS, Toulouse, France,

during summer 2010.

Dr. Tentzeris was the recipient/corecipient of the 2012 FiDiPro

Award in Finland, the iCMG Architecture Award of Excellence, the 2010

IEEE Antennas and Propagation Society Piergiorgio L. E. Uslenghi

Letters Prize Paper Award, the 2011 International Workshop on

Structural Health Monitoring Best Student Paper Award, the 2010

Georgia Tech Senior Faculty Outstanding Undergraduate Research

Mentor Award, the 2009 IEEE TRANSACTIONS ON COMPONENTS AND

PACKAGING TECHNOLOGIES Best Paper Award, the 2009 E. T. S. Walton

Award from the Irish Science Foundation, the 2007 IEEE APS

Symposium Best Student Paper Award, the 2007 IEEE IMS Third Best

Student Paper Award, the 2007 ISAP Poster Presentation Award, the

2006 IEEE MTT Outstanding Young Engineer Award, the 2006 Asian-

Pacific Microwave Conference Award, the 2004 IEEE TRANSACTIONS ON

ADVANCED PACKAGING Commendable Paper Award, the 2003 NASA

Godfrey ‘‘Art’’ Anzic Collaborative Distinguished Publication Award,

the 2003 IBC International Educator of the Year Award, the 2003 IEEE

CPMT Outstanding Young Engineer Award, the 2002 International

Conference on Microwave and Millimeter-Wave Technology Best Paper

Award (Beijing, China), the 2002 Georgia Tech–ECE Outstanding Junior

Faculty Award, the 2001 ACES Conference Best Paper Award, the 2000

NSF CAREER Award, and the 1997 Best Paper Award of the

International Hybrid Microelectronics and Packaging Society. He was

the TPC Chair for IEEE IMS 2008 Symposium and the Chair of the 2005

IEEE CEM–TD Workshop, and he is the Vice-Chair of the RF Technical

Committee (TC16) of the IEEE CPMT Society. He is the founder and

chair of the RFID Technical Committee (TC24) of the IEEE MTT Society

and the Secretary/Treasurer of the IEEE C–RFID. He is the Associate

Editor of the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,

the IEEE TRANSACTIONS ON ADVANCED PACKAGING and the International

Journal on Antennas and Propagation. He has given more than 100

invited talks to various universities and companies all over the world.

He is a member of URSI-Commission D, a member of MTT-15

committee, an Associate Member of EuMA, a Fellow of the Electro-

magnetic Academy, and a member of the Technical Chamber of

Greece. He is one of the IEEE MTT-S Distinguished Microwave

Lecturers for 2010–2012.

Niotaki et al. : Solar/Electromagnetic Energy Harvesting and Wireless Power Transmission

1722 Proceedings of the IEEE | Vol. 102, No. 11, November 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


