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Abstract—1In this paper, various topologies of feeding structures
are comparatively evaluated for 60-GHz three-dimensional in-
tegrated cavity resonators used in three-dimensional integrated
RF modules. Three excitation techniques (slot excitation with
a shorting via, slot excitation with a Ag/4 open stub, probe
excitation) have been evaluated using simulated and measured
data. The probe excitation is demonstrated as an attractive option
for wideband applications due to its relatively wide bandwidth
performance (~1.8%) and the strongest external coupling. The
slot excitation with an open stub outperforms the other techniques,
exhibiting the lowest insertion loss (~0.84 dB) for a 3-dB band-
width of about 1.5% centered at 59.2 GHz and has the simplest
fabrication.

Index Terms—Cavity resonators, low-temperature cofired ce-
ramic (LTCC), millimeter-wave (mmW), probe excitation, slot
excitation, system-on-package (SOP), 3-D integration, unloaded
quality factor (Qu).

I. INTRODUCTION

ECENTLY, the multilayer system-on-package (SOP) ap-
Rproach has emerged as an effective solution for the easy
3-D integration of embedded functions since it is based on mul-
tilayer technology using low-cost and high-performance ma-
terials. It aims to replace many discrete and surface-mounted
components by embedded components [1]. As the demand for
high-density, low manufacturing cost and high-performance RF
and millimeter-wave (mmW) wireless systems increases, low-
temperature cofired ceramic (LTCC) has been widely used as a
packaging material in RF and mmW applications because of its
mature multilayer fabrication capability, stability, and relatively
low cost [2]. Using LTCC multilayer technologies, integrated
waveguides (IWGs) and cavity filters can be easily realized in
compact configurations by vertically stacking them on top of
each other.

The IWG and cavities [3]-[8] employing metallic via arrays
as sidewalls have been commonly utilized to design microwave
and mmW components such as oscillators [4], power dividers
[5] and, filters [6], [7] because of their high quality factor (Q),
high power capacity, and great potential of 3-D integration
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Fig. 1. Top view of fabricated Circuits in low-temperature cofired ceramic
(LTCC). LTCC cavity resonators with three different excitation techniques are
fabricated. (first row: three samples with open stubs, second row: three samples
with shorting vias, third row: three samples with probe excitation, fourth row:
two samples of open pads and thru lines).

compared to the planar circuits. Many previous publications
[8]-[12] on low-loss and compact filters in LTCC technology
have experimentally verified its advantages for passive circuits
such as cavity resonators.

The type of the feeding structure is of great significance in
the design of the cavity resonators, especially in the mmW fre-
quencies, because it can significantly alter the circuit perfor-
mance (insertion loss, unloaded @ (Q,), accurate resonant fre-
quency). The microstrip line feeding through a coupling slot
in the ground plane was proposed by Pozar [13] and has been
applied to various mmW patch antennas [13], [14] and cavity
resonators/filters [7], [15]. The 3-D duroid-based electromag-
netic band-gap (EBG) cavity resonators/filters presented in [7]
have demonstrated their compatibility with current printed cir-
cuit board (PCB) fabrication technology and the reconfigura-
bility through the use of electronically switched post elements.
Ito et al. [16] developed 60-GHz (V-band) alumina waveguide
filters using the coplanar waveguide (CPW) I/O ports. It exhib-
ited less than 3-dB insertion loss and a good stop-band rejection
near the pass-band. To achieve high-@) (>1000), a microstrip-
connected probe has been weakly coupled to a cavity resonator
at Ka band [8]. Although various cavity excitation techniques
have been investigated by several authors [8], [17] over the past,
it is still challenging to choose the best technique especially for
mmW applications because of their different operating charac-
teristics and tradeoffs based on the demands considered.

This paper presents for the first time an experimental eval-
uation of 60 GHz 3-D LTCC cavity resonators fed by three
different excitation techniques as shown in Fig. 1 (1) slot excita-
tion with a shorting via, 2) slot excitation with a A, /4 open stub,
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and 3) probe excitation). The performance of the three excita-
tion schemes is comparatively evaluated in terms of S-parame-
ters, bandwidth, external coupling (Qext), Qu, and fabrication
accuracy/simplicity based on electromagnetic simulations and
experimental results. Details of the design procedure of each
technique are discussed.

II. DESIGN OF CAVITY RESONATOR

The design of the presented multilayer LTCC cavity resonator
is based on the conventional rectangular cavity resonator ap-
proach [7]. The 60-GHz resonant frequency of T'F,,,,,; mode is
given by [18]

_c mm 2 nm\ 2 Ir\* !

.z”re.,s,—27r\/a (L)+(H)+<W> 1)
where f.s is the resonant frequency, ¢ the speed of light in
vacuum, ¢, the dielectric constant of the cavity filling, L the
length of cavity, W the width of cavity, and H the height of
cavity. The initial dimensions of the cavity with perfect electric
conductor (PEC) walls can be determined using (1) for T'E10;
mode by simply indexing m = 1, n = 0, and [ = 1. A height
(H) of 0.3 mm was determined to satisfy both the compactness
requirement and a relatively high @@ value (>350). Then, the
vertical PEC walls can be replaced by via fences to eliminate
the surface currents. The final dimensions of the cavity are op-
timized using the HFSS simulator. Since the feeding structure
affects not only the physical dimensions but also the electro-
magnetic behavior of the cavity, it is a key issue to choose the
optimal type of feeding structure in order to achieve low inser-
tion loss, high @, and accurate resonant frequency.

To minimize the field leakage, the spacing between the via
posts in the sidewalls has to be less than half guided wave-
length (A /2) at the highest frequency of interest [7]. Also, it
has been experimentally proven that the double rows of vias are
sufficient to suppress the field leakage and enhance @ [7]. In
the full-wave simulations, double and triple rows exhibit almost
the same characteristics such as an insertion loss of 1.14 dB,
while a single row exhibits 1-dB higher insertion loss due to a
higher leakage. However, the triple rows of vias have been im-
plemented in fabrication to ensure a high level of leakage block
that may have been compromised due to the simulation error
and the fabrication accuracy. In this paper, the minimum via
pitch and the minimum via diameter have been set to 390 and
130 pm, respectively.

The @, of a rectangular cavity resonator can be obtained by
the following equation: [19]

1 1\ !
u = 2
Q (Qcond + Qdielec) ( )

where Q) cong is related to the lossy conducting walls, and Q) gielec
to the dielectric losses. The quality factors QQcond and Qgielec
can be calculated, respectively, using [19]
(kW L)2Hn
212R,,(2W3H + 2L3H + W3L + L3W)
1
tan(9)

Qcond =

3)

“4)

Qdioloc =

where k is the wave number, R, is the surface resistance of
the cavity ground planes, 7 is the wave impedance of the LTCC
filled resonator, L, W, and H are, respectively, the length,
width, and height of the cavity resonator, and tan(9) is the loss
tangent of the LTCC substrate filling the cavity resonators. The
quality factor (2)—(4) of a rectangular cavity can be used in the
cavity using via-array sidewalls due to effective performance
of the via-arrays, which almost matches the performance of the
PECs [7], [8].

The loaded quality factor (();) can be obtained by adding
the losses (Qext) Of the external excitation circuit to the @, as
expressed in [19]

—1
1 1
Q= (— + ) (%)
Qu Qext
The theoretical ) values can be extracted from the simulated

performances of a weakly coupled cavity resonator using the
following equations [19]: fres

N (6)
_ Q
S21(dB) =201logy { —— @)
Qext
1 1\
u = -~ 8
Q <Ql Qext) ( )

where A f is the 3-dB bandwidth.

The weak external coupling (S21~20 dB) is imperative ver-
ifying the @, of the cavity resonator. The comparison between
the theoretical and the HFSS-based (), values is discussed in
Section III. The external coupling strength of three feeding tech-
niques is also compared in Section III based on the Q). mea-
sured from strongly coupled resonators using (6) and (7). All
fabricated resonators were measured using the Agilent 8510C
Network Analyzer and Cascade Microtech probe station with
250-pm-pitch air coplanar probes. A standard short-open-load-
thru (SOLT) method was employed for calibration.

III. COMPARISON OF EXCITATION TECHNIQUES

A. Slot Excitation With a Shorting Via

Fig. 2 shows (a) the top view, (b) a 3-D overview, and (c)
the side view of the proposed structure. Microstrip lines are uti-
lized to excite the resonator through coupling slots etched in the
top metal layer (metal 2) of the cavity as shown in Fig. 2(c). In
order to maximize the magnetic coupling by maximizing mag-
netic currents, the microstrip lines are terminated with a phys-
ical short circuit realized by a metallic via. The spacing [VE in
Fig. 2(a)] between the center of the via and the edge of the slot
is determined to be 165 psm according to the LTCC design rules
we used.

The accurate design of the external coupling slots is a key
issue to achieve a high-@Q cavity resonator. The external cou-
pling factor is directly related to the input resistance and reac-
tance that can be controlled by the position and size of the cou-
pling aperture [20]. To determine the dimensions of the slots for
the optimum response, the coupling slots are initially located at a
quarter of the cavity length [SP in Fig. 2(a)] from the edge of the
cavity to maximize the coupling [7], and then the slot width [SW
in Fig. 2(a)] is varied with the constant slot length [SL = Ag/4
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Fig. 2. LTCC cavity resonator employing slot excitation with a shorting via.
(a) Top view of feeding structures. (b) 3-D overview. (c) Side view of the pro-
posed resonator.

at 60 GHz in Fig. 2(a)]. As the slot width increases, the radius
of the simulated impedance locus increases, which denotes a
strong external coupling. The dimensions of the coupling slots
have been determined to be 0.538 x 0.21 mm? (= 0.21), X
0.08)\;). Then, the position of the slots is adjusted to obtain
the desired insertion loss, resonant frequency, and input imped-
ances. The optimized results for resonant frequency (59.9 GHz),
insertion loss (1.07 dB), and bandwidth (1.5%) are obtained
with SP = 0.4475 mm (= 0.19),) [Fig. 2(a)].

Fig. 3 shows (a) the electric field distributions, (b) the mag-
netic field distributions inside the cavity surrounded by rows of
vias, and (b) of the top substrate. It is clearly observed that two
rows of vias are sufficient to block the field leakage through
vias in Fig. 3(a). Nevertheless, in the fabrication, three rows
of via posts were used to ensure a high level of leakage block
with respect to both the simulation error and the fabrication ac-
curacy as mentioned in Section II. The simulation of the top
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Fig. 3. (a) Electric field distribution and (b) magnetic field distribu-
tion inside the cavity [substrate 2—4 in Fig. 2(c)] using shorting vias at
resonant frequency (= 59.4 GHz) (c) electric field distribution of the top
substrate layer [substrate 1 in Fig. 2(c)].

substrate [Fig. 3(c)] shows the decoupling between the two mi-
crostrip feedlines because of shorted vias providing the neces-
sary shielding. All final design parameters are summarized in
Table I.

The proposed cavity resonator was fabricated in LTCC multi-
layer substrate (e, = 5.4, tan 6 = 0.0015). The dielectric thick-
ness per layer is 100 pm, and the metal thickness is 9 pm. Its
photograph is shown in Fig. 4. The overall size was 3.8 mm x
3.2 mm x 0.3 mm (including the CPW measurement pads).

The measured insertion and reflection loss of the fabricated
cavity are compared with the simulated results in Fig. 5. The
measured insertion loss is 1.28 dB, which is 0.21 dB higher than
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TABLE 1
DESIGN PARAMETERS OF CAVITY RESONATORS USING THREE DIFFERENT EXCITATION TECHNIQUES

Cavity Resonator using Shorting Vias Cavity Resonast:)l:;susmg Open Cavity Resonators using Probes
Desian Parameters Dimensions Design Dimensions Design Dimensions
g (mm) Parameters (mm) Parameters (mm)
. . effective cavity effective cavity
effective cavity length (L) 1.95 length (L) 1.95 length (L) 1.95
. Lo effective cavity effective cavity
effective cavity width (W) 1.318 width (W) 1.318 width (W) 1.276
. . . effective cavity effective cavity
effective cavity height (H) 0.3 height (H) 0.3 height (H) 0.3
slot positionin, probe
slot positioning (SP) 0.4475 L g 0.4475 positioning 0.4475
(SP) P)
shorted via positioning open stub via pad radius
(VP) 0.7175 length (OSL) 0.485 (rad1) 0.165
slot length (SL) 0.538 slot length (SL) 0.538 ap"’;‘r‘:iz“)’d‘“s 0.24
slot width (SW) 0.21 slot width (SW) 0.21
via pitch (VD) 0.39 via pitch (VD) 0.39 Via pitch (VD) 0.39
via diameter 0.13 via diameter 0.13 via diameter 0.13
via rows 3 via rows 3 via rows 3
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the simulated value, while return losses match closely. The main —A— 811 (measured)
source of this discrepancy might be the radiation loss from the 25 A st (S'mlmatec.’) '
feeding line. The center frequency shift from 59.9 to 59.4 GHz 57 58 59 60 61 62 63
can be attributed to the fabrication accuracy (dielectric constant Frequency (GHz)

variation, slot positioning affected by the alignment between
layers, via positioning tolerance, shrinkage, and layer thickness
tolerance). Also, the resonator exhibits a 3-dB bandwidth of
about 1.18% at the center frequency of 59.4 GHz, compared
to 1.5% from the simulated model. The narrow bandwidth in
measurements might be due to the fabrication accuracy of the
slot design that has been optimized for the original resonant
frequency and not for the shifted frequency. Also, in the cal-
ibration task, the calibration kit containing information about
the Cascade probes and Cascade impedance standard substrates
(ISS) was loaded into SOLT dialog box supported by “Wincal”
software. Wincal gives us the ability to de-embed capacitance
effects of CPW open pads and inductive effects of short pads
from device measurements, but it cannot effectively remove all
parasitic effects at this high-frequency range so that we can ex-
pect the band-limiting effect to S21 performance as well. The
extracted (), from the weakly coupled resonators in full-wave
simulations was found to be 360 that is lower than the theoret-
ical @, of 372 obtained using (2)—(4). The Q.xt was measured
to be 73.23.

Fig. 5. Comparison between measured and simulated S-parameters (S11 and
S21) of a cavity resonator using slot excitation with a shorting via.

B. Slot Excitation Using a Ay /4 Open Stub

Fig. 6 shows (a) the top view of the feeding structure and
(b) the side view of the microstrip-fed cavity resonator using a
Ag/4 open stub slot excitation technique. The structure is the
same as in the previous Section III-A, except that the microstrip
feed-line is terminated with a A, /4 open stub beyond the slot.

All design parameters are summarized in Table I. The mag-
nitude of the electric field distribution inside the cavity is simu-
lated at the resonant frequency of 59.8 GHz and its efficient con-
tainment is clearly observed in Fig. 7(a). However, the extended
stubs generate electrical coupling effects between the feed-lines
and the substrate as shown in Fig. 7(b). The photograph of the
LTCC is shown in Fig. 8.

Fig. 9 shows the simulated and the measured .S-parameters
of the cavity resonator with open stubs. Good correlation is ob-
served for insertion loss. The resonator measurements exhibit
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Fig. 6. LTCC cavity resonator employing slot excitation with an open stub.
(a) Top view of feeding structure. (b) Side view of the proposed resonator.
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Fig. 7. (a) Electric field distribution inside the cavity using slot excitation with
an open stub at resonant frequency (= 59.2 GHz). (b) Electric field distribution
of the top substrate layer [substrate 1 in Fig. 6(b)].

an insertion loss <0.84 dB, a return loss about 20.59 dB at
the center frequency of 59.2 GHz, and a 3-dB bandwidth about

1/0 microstrip feedlines Dors
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Fig. 8. Photograph of the fabricated cavity resonator using slot excitation with
an open stub.
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Fig. 9. Comparison between measured and simulated S-parameters (S11 and
S21) of a cavity resonator using slot excitation with an open stub.

1.5% at the center frequency. The simulation shows almost the
same insertion loss and return loss but an increased bandwidth
of 2.3% around the center frequency of 59.8 GHz. The narrow
bandwidth in measurements might be due to the fabrication ac-
curacy of the slot design that has been optimized for the orig-
inal resonant frequencies and not for the shifted frequencies.
The frequency downshift between measurements and simula-
tions is similar to the one observed in Section III-A. The long
I/O feed lines that are terminated with 0.085-mm gap between
them could be responsible for the asymmetrical response due
to the parasitic cross-coupling and substrate coupling effects as
shown in Fig. 7(b). The excitation technique using a shorting via
takes advantage of the significantly reduced coupling between
the two microstrip feed-lines because of the vias providing the
necessary shielding. Using (6)—(8), the simulated ), was found
to be 367, which is approximately 2% higher than that with a
shorting via. The measured ()oxt Was 60.52 which is lower than
a shorting via (Qext ~ 73.23).

C. Probe Excitation

Fig. 10 illustrates (a) the top view of the feeding structure and
(b) the side view of via-fed cavity resonator. The probe length
[PL in Fig. 10(b)] and the probe position [PP in Fig. 10(a)] are
the dominant design factors to achieve the maximum coupling
from the probe to the cavity and are investigated with the aid
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Fig. 10. LTCC cavity resonator employing probe excitation. (a) Top view of
feeding structure. (b) Side view of the proposed resonator.

of HFSS. For maximum coupling with the TEp; mode in the
cavity, the probe [exciting vias in Fig. 10(b)] descends into the
cavity through a circular aperture [aperture in Fig. 10(a)] etched
in the second metal layer [metal 2 in Fig. 10(b)] up to the lo-
cation of the maximum electric field at a distance of half of
the cavity height. In our design, the excitation probe consists
of three vias vertically stacked and penetrates three substrate
layers [substrate 1-3 in Fig. 10(b)]. The size of the via pads is
kept to the minimum size allowed by the LTCC design rules to
minimize the parasitic effects.

The effect of the probe position was investigated in terms
of insertion loss, bandwidth, and input impedance. The probes
were initially located at the edge of the cavity, and then moved
toward the center to achieve the strongest coupling possible. The
probe position [PP in Fig. 1(0a)] has been found to be optimum
at the same location (PP = 0.4475 mm) as the slot position
in Sections III-A and III-B. The effect of the aperture size was
also investigated. It was observed from the simulations that the
bandwidth gets wider and the insertion loss lower with the de-
crease of the aperture radius [rad2 in Fig. 10(a)].

The dimension of the cavity composed of the via walls was
determined to be 1.95 x 1.276 mm? (= 0.77)\; x 0.5);).
The width of this cavity is 42 pm smaller than the ones in
Sections III-A and III-B. The resonant frequency shifts down
because of the probe perturbation. This perturbation can be
characterized with induced dipole moments [18]. All design
parameters are summarized in Table I. The simulated electric
field distributions, both inside the cavity and inside the top
substrate, are shown in Fig. 11(a) and (b), respectively. The
efficient containment of the electric field and the perfect de-
coupling between the two feeding structures is observed. The
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Fig. 11. (a) Electric field distribution inside the cavity using probe excitation
at resonant frequency (= 59.8 GHz). (b) Electric field distribution of the top
substrate layer [substrate 1 in Fig. 10(b)].
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Fig. 12. Photograph of the fabricated cavity resonator using probe excitation.

cavity resonator using probe excitation was fabricated using
LTCC technology, and its photograph is shown in Fig. 12.

The S-parameter data from both the simulations and the mea-
surements are shown in Fig. 13. The measured insertion loss of
0.95 dB is a little larger than the simulated value 0.67 dB, but
the measured bandwidth of 1.8% is narrower than the predicted
value 3.74%. This difference might be due to a change in the ex-
ternal coupling caused by a misaligned probe position that can
significantly affect the electromagnetic performance. No signif-
icant frequency shift in the operating frequencies of 59.8 GHz is
observed. The simulated (),, was found to be 355 compared to
the theoretical (), of 362. The ().t Was measured to be 49.8.
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TABLE II
COMPARISON OF MEASURED RESULTS OF THREE DIFFERENT EXCITATION TECHNIQUES
slot excitation with a | slot excitation with an I
shorting via open stub probe excitation
Resonant Frequency (freg) 59.4 GHz 59.2 GHz 59.8 GHz
Insertion Loss (S21) 1.28 dB 0.84 dB 0.95 dB
Return Loss (S11) 18 dB 20.59 dB 22.3dB
Bandwidth (BW) 1.18% 15% 1.8%
Simulated Unloaded Q (Qy) 360 367 355

Measured External Q (Qext) 73.23 60.52 49.80
0 Jrrey i TN | - excitation with a Ag/4 open stub, probe excitation) were com-
“m“'é:;:mz:“/" ... :;:W"nmm paratively evaluatefi in terms of S-parameters, bandwidth, ex-
5 . o Yo ,‘\ "\ﬁr“yv' ®o - ternal coupling (Qext ), Qu, and fabrication accuracy/simplicity
o’ Fv e **dee,, based on electromagnetic simulations and experimental results.
tod o .,f' M \A /_/' ".' “oee For mmW wideband applications, the probe excitation exhibited
By P ~ Y \ L/ "h_ a relatively wi(.ie bandwidth nature (~1.8%) with the strongest
_,‘,' l "-.. external coupling based on the lowest Qey¢. The slot excita-
@ -15 .__F 1 4 T, tion with open stub exceeded the other techniques in terms of
P X \ "'-.__1_ B the lowest insertion loss (~0.84 dB) over the 3 dB bandwidth
= - '\\ 1 .- around the center frequency of 59.2 GHz as well as fabrication
20 & \I 521 (measured) simplicity. The shorting via exhibited excellent blockage of the
v —e —S21 (simulated) electrical coupling between two microstrip feedlines along with
25 —A—S11 (measured) a much simpler fabrication process than the probe excitation.
v st (Simlulateﬁi) The presented structures can be used in the development of 3-D

57 58 59 60 61 62 63
Frequency (GHz)

Fig. 13. Comparison between measured and simulated S-parameters (S11 and
S21) of a cavity resonator using probe excitation.

D. Discussion

Table II summarizes the experimental results of the three
cavity excitation techniques. Based on experimental results, the
probe excitation exhibits the strongest coupling in terms of the
lowest QQoxt measured from the strongly coupled resonators by
using (6) and (7). In addition, the probe excitation is an attrac-
tive option for wideband applications due to its relatively wide
bandwidth performance, but it requires a mature fabrication
capability (accurate via stacking and alignment) to implement
the probe structure.

The slot excitation with open stubs demonstrates the lowest
insertion loss. An open stub contributes to fabrication simplicity
with no need of drilling via holes to implement the feeding struc-
tures. Also, it avoids the loss and inductance effects generated
by the via structure that could be serious in the mmW frequency
range. However, the excitation techniques using a shorting via
and vertically stacked vias (probe) take advantage of preventing
electrical coupling between two microstrip feed-lines because
of vias providing the necessary shielding, while reducing the
substrate coupling effects generated from the extended open
stub.

IV. CONCLUSION

In this paper, we presented for the first time a comparative
study validated by measured data of three different excitation
techniques for 3-D LTCC integrated cavity resonators. Three
excitation techniques (slot excitation with a shorting via, slot

multipole cavity band pass filters, and can be easily integrated
within 3-D LTCC 60-GHz front-end modules.
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