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Abstract—The length of a wall-shorted rectangular patch
antenna can be reduced from 0 4 to 0 8 by a simple
folding operation, which results in a stacked shorted-patch (S-P)
structure with a resonant frequency that can be controlled by
modifying the distance between the stacked (lower and upper)
shorted-patches. A theoretical analysis based on a simple trans-
mission-line model is presented and compared with numerical
simulations, showing good agreement if the height of the folded
patch is much smaller than the patch length. The physical insight
of the variation of the resonant frequency for this reduced-size an-
tenna can be understood by considering the antenna as a shorted
patch loaded with a capacitor. An experimental verification is
carried out for a 15mm 15mm 6mm folded S-P antenna
prototype designed for the 2.4 GHz ISM band that can achieve
a 10-dB return loss bandwidth of 4% and results in a nearly
omni-directional radiation pattern.

Index Terms—Antenna theory, microstrip antennas, small an-
tennas.

I. INTRODUCTION

I N MODERN mobile and wireless communications systems,
there is an increasing demand for smaller low-cost antennas

that can be easily integrated with packaging structures [1], [2].
It is well-known that planar antennas, e.g., a microstrip patch,
have a significant number of advantages over conventional an-
tennas, such as low profile, lightweight and low production cost.
Nevertheless, in some mobile/wireless applications such as the
AMPS/PCS, GSM/DCS, PDC/PHS, IMT 2000, or WLAN in
the 2.4 GHz Industrial Scientific and Medical (ISM) band, their
physical size may be too large for handheld terminals.

A number of techniques have been proposed to reduce the
physical size of a conventional half-wave ( , is the guide
wavelength in the substrate) patch antenna [3]–[14]. The most
straightforward approach is to use a high dielectric constant sub-
strate [3], however, it leads to poor efficiency and narrow band-
width. A shorting wall has been used to reduce the overall size
of the patch antenna to [4], while a shorting pin near the
feed can reduce the patch size even further [5], [6].

The planar invert-F antenna (PIFA) is one of the most well-
known and documented small patch antennas [7]. Actually, the
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PIFA can be viewed as a shorted-patch (S-P) antenna. Therefore,
the antenna length of a PIFA is generally less than . When
the shorting post is located at a corner of a square plate, the
length of the PIFA can be reduced to [8]. The size of a PIFA
can be also reduced to less than by capacitively loading it
[9].

Recent research efforts on the size reduction of patch an-
tennas have focused on the patch-shape optimization to increase
the effective electric length of the patch [10]–[14]. A three-layer
[10] or two-layer [11], [12] folded rectangular patch may reduce
the resonant frequency by 50% compared with a conventional
patch. By notching a rectangular patch, the antenna length can
be reduced to less than [13]. A printed antenna with a sur-
face area 75% smaller than a conventional microstrip patch was
obtained by incorporating strategically positioned notches near
a shorting pin [14].

In this paper, we propose a simple technique for further re-
ducing the size of a conventional S-P antenna [4]. By folding a
quarter-wavelength wall-shorted rectangular patch, the antenna
length can be reduced to . The resonant frequency of
the folded S-P antenna can be further lowered through a reduc-
tion of the distance between the folded patch parallel surfaces
(consisting of a lower patch and an upper patch). First, the ge-
ometry of the folded S-P antenna is developed and the antenna
performance is demonstrated. Then, a theoretical analysis of the
impedance characteristics of the folded S-P is presented with
comparison to numerical simulations. Finally, an experimental
verification is provided for a folded S-P antenna prototype that
was designed at the 2.4 GHz ISM band.

II. DEVELOPMENT OF THE ANTENNA

It is well-known that a conventional rectangular patch an-
tenna operating at the fundamental mode ( mode) has
an electrical length of , as illustrated in Fig. 1(a). Con-
sidering that the electric field is zero for the mode at
the middle of the patch, we can short the patch along its middle
line with a metal wall without significantly changing the reso-
nant frequency of the antenna. Thus, we get a S-P antenna with
an antenna length of , as shown in Fig. 1(b). Folding
the shorted patch (folded S-P) together with the ground plane
[see Fig. 1(c)] maintains the total resonant length of the an-
tenna to be , while the physical length of the antenna
gets reduced by almost 50% through the folding op-
eration. It should be emphasized that it is necessary to fold the
ground plane as well while folding the shorted patch. Otherwise
the folded antenna would look like an S-antenna developed in
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Fig. 1. Development of a folded S-P antenna. (a) Conventional rectangular patch. (b) Conventional S-P. (c) Folding of a conventional S-P. (d) Folded S-P.

Fig. 2. 3-D geometry of the folded S-P antenna.

[15] for a dual-band operation. Finally, we add a new piece of
the ground plane to the right because the original right part of
the ground plane now serves as an upper patch of the folded
S-P, and press the folded patch together to form a lower patch
of the folded S-P antenna, as shown in Fig. 1(d). The 3-dimen-
sional (3-D) geometry of this folded S-P antenna is illustrated in
Fig. 2. The heights, widths and lengths of the lower and upper
patches are, respectively, , , and , , . In the
analysis below, we assume that the thickness of the patch plates
is much smaller than the heights of the patches ( and ). The
folded S-P antenna is fed by a probe positioned at the middle of
the lower patch in the x direction and away in the y direction
from the edge of the shorting wall of the lower patch.

To demonstrate the size-reduction capability of the folded S-P
antenna, we first compare its resonant frequency with that for a
conventional S-P antenna, which has the same length and width
(10 mm 10 mm). The return-loss results (50 match), simu-
lated by two different simulators, the TLM-based Micro-Stripes
5.6 [16] and an FDTD code developed in house, are shown in
Fig. 3, showing good agreement. It is found that the resonant fre-
quency of the folded S-P (plotted from 2–5 GHz) is only about
3.6 GHz, about 57% of that (= 6.3 GHz) for the conventional
S-P antenna. This means that the antenna length of the folded
S-P is only , 4 times smaller than a conventional patch
antenna.

It should be mentioned that the resonant frequency of the
folded S-P is slightly higher than the expected value, i.e., one
half of that for the conventional S-P. This is mainly due to a

Fig. 3. Return loss for a folded S-P compared with a conventional S-P
(parameters for the folded S-P: L =9.5 mm, W = 10 mm, L = W =

10 mm, h = 1.5 mm, h = 1.5 mm, y = 2.25 mm, r = 0.25 mm,
ground plane = 20 mm � 20 mm; parameters for the conventional S-P:
L = W = 10 mm, h = 1.5 mm, y = 2.25mm, r = 0.25 mm, ground plane
= 20 mm � 20 mm).

shorter length ( 9.5 mm) of the lower patch of the folded
S-P than the length ( 10 mm) of the conventional S-P be-
cause of the need of a small gap between the lower patch and
the shorting wall of the upper patch to allow the power flowing
from the feeding point to the radiating slot. To support this argu-
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Fig. 4. Comparison of input impedance between a folded S-P and an unfolded
S-P (parameters for the folded S-P:L = 9:5mm,W = 10 mm,L = W =
10 mm, h = 1.5 mm, h = 1.5 mm, y = 2.25 mm, r = 0.25 mm, ground
plane = 20 mm � 20 mm; parameters for the unfolded S-P: L =19 mm
(= 2L ), W = 10 mm, h =1.5 mm, y = 2.25 mm, r = 0.25 mm, ground
plane = 20 mm � 30 mm).

ment, we compare the input impedance of the folded S-P again
with a 10 mm 19 mm unfolded S-P (whose length (19 mm) is
twice the length ( 9.5 mm) of the lower patch of the folded
S-P) on a Smith chart, as shown in Fig. 4. The agreement of the
input impedance between the folded S-P and the unfolded S-P
appears to be good, showing a difference of less than 3% be-
tween the resonant frequencies of these two antennas.

To further demonstrate the equivalence of operation between
the folded S-P and the unfolded S-P with double physical length,
the electric field and surface current distributions at resonant fre-
quencies of the two antennas are compared in Fig. 5. It can be
observed that the folded S-P has a field distribution close to that
of the unfolded S-P. The electric field of the folded S-P is con-
centrated in the gap between the lower and upper patches, like
the electric-field distribution in the right half part of the unfolded
S-P. Also we can observe similar surface current distributions on
the folded and unfolded S-P antennas. Note that the lower and
upper surfaces of the lower patch of the folded S-P correspond
to the lower surface of the unfolded S-P and that the lower sur-
face of the upper patch of the folded S-P corresponds to the right
half-part of the ground plane beneath the unfolded S-P.

From the enlarged plot of the electric-field distribution in the
folded S-P, we can also observe an electric-field concentration
between the edge of the lower patch and the shorting wall of the
upper patch due to the effects of a sharp edge of the lower patch
and the short distance between the edge and the shorting wall.
This electric-field concentration may lead to a reduction of the
impedance bandwidth. One way to alleviate it would be an in-
crease in the distance between the edge and the shorting wall, a
requirement for a shortened . However a decrease in may
result in an increase in resonant frequency. For this example, the
resonant frequency is 3.6 GHz with a 10-dB return-loss band-
width of 1.9% for 9.5 mm, while the resonant frequency

increases to 3.8 GHz with an increased bandwidth of 2.1% if
decreases to 8.5 mm, while keeping the length of the upper

patch to 10 mm. Note that the impedance bandwidth of
the folded S-P is found to be comparable with that (about 2%)
of the unfolded S-P.

The radiation pattern at the resonant frequency for the folded
S-P is shown in Fig. 6, where it is compared to a conventional
S-P. Note that for comparison, the radiating slots of the folded
and conventional S-P antennas are oriented to the same direc-
tion, namely, the direction. As expected, a similar radiation
pattern is observed since the folded and conventional S-P an-
tennas share the same radiating slots. Nevertheless, it is noticed
that the folded S-P has a lower directivity gain (about 3 dBi)
compared to the conventional S-P (4 dBi) due to the increased
backside radiation (note that the electric size of the ground plane
for the folded S-P is smaller than that for the conventional S-P.
The radiation efficiency for the folded S-P is calculated to be
94% , slightly lower than its unfolded
counterpart (about 96%) due to a slightly stronger surface cur-
rent distribution on the folded S-P and the additional loss on the
shorting wall of the upper patch (see Fig. 5). If the resonant fre-
quency of the folded S-P gets smaller by reducing the width of
the shorting walls or the distance between the lower and upper
patches, the radiation efficiency will reduce significantly. It is
found, for example, that for a folded S-P antenna with an an-
tenna length of the radiation efficiency is less than
40%.

III. THEORETICAL ANALYSIS

The impedance characteristics of the folded S-P antenna can
be analyzed by employing a simple transmission-line model [9],
[12]. Consider a folded S-P with three different patch-height ar-
rangements: a) case I ( 1.0 mm); b) case II (
0.5 mm, 1.0 mm); and c) case III ( 1.0 mm,
0.5 mm). The equivalent unfolded S-P configurations associated
with these three cases are illustrated in Fig. 7(a)–(c). Neglecting
the effect of discontinuities because is much smaller
(at least ten times less) than the length of the folded S-P, the un-
folded S-P can be represented by a transmission-line equivalent
circuit as shown in Fig. 7(d) [19] with input impedance

(1)

where is the feed-probe reactance given by

(2)

with and = the feed-probe radius.
is obtained from the transmission-line equivalent circuit, that is

(3)

(4)

where and are respectively the characteristic admit-
tances of the lower and upper patches, and .
Here, is the conductance associated with the power radiated
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Fig. 5. Electric field and surface current distributions at resonant frequencies. (a) Folded S-P. (b) Unfolded S-P.

from the radiating edge (or the radiating slot), and is the sus-
ceptance due to the energy stored in the fringing field near the
edge. In our calculations, we used the following equations for

( for or for ) [20], , and
[19]:

for (5)

for

for

for

(6)

(7)

(8)

where W is the width of the patch and coefficients , , ,
can be found in Appendix B of [19].

The theoretical results for the input impedance have been
obtained using the above analytical expressions and compared
in Fig. 8 with numerical simulation (using Micro-Stripes 5.6)
for the above three cases of the folded S-P, demonstrating a
good agreement. The difference between the theoretical and
simulated resonant frequencies is less than 3%. Also, it can be
observed that the resonant frequency decreases as de-
creases. This can be explained qualitatively as follows:

For simplicity, we neglect the effects of (typically
[21]) and (note that we are now only interested in the

resonance of the patch alone). As a result the unfolded S-P be-
comes a shorted transmission line loaded with an open trans-
mission line. Assuming that the resonant frequency is almost
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Fig. 6. Calculated radiation pattern of the folded S-P at 3.6 GHz compared
with a conventional S-P at 6.3 GHz.

independent on the feeding position, we can choose .
Thus, becomes

(9)

At resonance, leads to

(10)

From (5), it is observed that is inversely proportional to h;
therefore, we can find from (10) that the resonant frequency
varies proportionally with . A graphical solution of (10)
for resonant frequency is depicted in Fig. 9, where the intersec-
tion of the curves and implies a
resonant point. Observe that if , then ,
which corresponds to an antenna length of . Also ob-
serve that an increase in leads to a decrease in if
keeps unchanged.

Considering the upper patch as a capacitive load leads to a
clear picture of the physical insight for the above analysis. Re-
placing the upper patch with a capacitor C which is connected

Fig. 7. Folded S-P and its equivalent transmission-line model. (a) Case I (h =

h =1.0 mm). (b) Case II (h = 0.5 mm, h =1.0 mm). (c) Case III (h = 1
mm, h =0.5 mm). (d) Simple transmission-line model.

between the radiating edge of the lower patch and the ground
plane, (9) becomes

(11)

A graphical solution of (11) is also plotted in Fig. 9. Obviously,
the resonant frequency decreases as the capacitance increases.
The resonant length of a capacitively loaded S-P will reduce to

if the loaded capacitance is , where
obtained from .

Actually a decrease in is equivalent to an increase in the cou-
pling capacitance between the upper and lower patches, thus
eventually leading to a decrease in the resonant frequency. In
fact, some of small antenna structures ([9]–[12]) can be consid-
ered as a capacitively loaded patch.

It has to be noted that the above simple transmission-line
model works well only if the total height of the folded patch
is much smaller (at least five times less) than the patch length
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Fig. 8. Theoretical (transmission-line model) and numerical results for input impedance of a folded S-P with different height arrangements (parameters: L =

9.5 mm, W = 10 mm, L = W = 10 mm, y = 1.5 mm , r = 0.25 mm, ground plane = 20 mm � 20 mm). (a) Case I (h = h = 1.0 mm). (b) Case II
(h =0.5 mm, h = 1.0 mm). (c) Case III (h = 1.0 mm, h = 0.5 mm).

and if the discontinuity is much shorter (at least 10
times less) than the total length of the folded patch antenna.

IV. EXPERIMENTAL VERIFICATION

A folded S-P antenna prototype has been designed for the 2.4
GHz ISM band (2.4–2.483 GHz). We chose the dimensions of
the folded S-P to be 15 mm 15 mm . Note
that the dimensions of the patch in [22] are 38.6 mm 37 mm
even though it was built on a substrate with a dielectric constant
of 2.23. In order to achieve the bandwidth (near 4%) required
by the ISM band, the total thickness of the antenna was selected
to be 6 mm. By adjusting the height of the lower patch to
2.85 mm, we can tune the resonant frequency near 2.44 GHz.

This folded S-P antenna was fabricated with of a brass sheet
with a thickness of 0.254 mm. The simulated and measured re-
sults for the return loss are plotted in Fig. 10 with an inset picture
of the antenna prototype. As seen, good agreement is obtained
and both of the simulated and measured 10-dB return-loss band-
widths cover the ISM band. The simulated and measured radia-
tion patterns in the xz-and yz-planes at 2.44 GHz are compared
in Fig. 11. Good agreement is again noted. A slight discrepancy
is mainly due to the SMA connector used in the measurement,
which has a comparable size with the antenna. There is a nearly
omni-directional pattern for the copolarized component, which
is desirable for mobile/wireless applications. The radiation effi-
ciency of the folded S-P is measured to be approximately 90%,
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Fig. 9. Graphical solution of (10) and (11) for the calculation of the resonant
frequencies of a capacitively loaded S-P (! = 3�=(4L )� 10 rad� s ).

Fig. 10. Simulated and measured results for the return loss of a folded S-P
prototype for the 2.4 GHz ISM band (parameters: L = 14 mm, L = 15 mm,
W = W = 15 mm, h = 2.85 mm, h = 3.15 mm, d = d = 15 mm,
y = 5 mm, r = 0.325 mm, ground plane = 30 mm � 30 mm).

slightly lower than the simulated result (95%), mainly due to
both calibration and simulation errors.

V. CONCLUSION

The length of a conventional quarter-wavelength S-P antenna
can be reduced by a factor of almost 2 via folding the shorted
patch together with the ground plane. Moving the lower and
upper patches closer may further lower the resonant frequency
of the folded S-P antenna. A theoretical analysis reveals the
physical insight of the resonance characteristics of this antenna.

Fig. 11. Comparison of simulated and measured radiation patterns at 2.44 GHz
for the folded S-P prototype in Fig. 10.

The upper patch can be considered as a capacitive load, thus re-
sulting in a decrease in the resonant frequency. A prototype of a
folded S-P antenna has been designed and fabricated for the 2.4
GHz ISM band, achieving an impedance bandwidth of 4% and
a nearly omni-directional radiation pattern, which may be suit-
able for numerous mobile communications/WLAN systems.
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