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A Broadband Omnidirectional Circularly
Polarized Antenna

XuLin Quan, RongLin Li, Senior Member, IEEE, and Manos M. Tentzeris, Fellow, I[EEE

Abstract—A broadband circularly polarized (CP) antenna
is developed with an omnidirectional radiation pattern in the
horizontal plane. Four broadband CP rectangular loop elements
are employed for broadband omnidirectional CP radiation. The
four rectangular loop elements are first printed on a flexible thin
dielectric substrate and then rolled into a hollow cylinder. A
conducting cylinder is introduced inside the hollow cylinder for
achieving desired omnidirectional CP performance. A feeding
network consisting of four broadband baluns and an impedance
matching circuit is designed to feed the four rectangular loop
elements. The omnidirectional CP antenna has a circular cross
section with diameter of 0.38)\,. Experimental results show
that the omnidirectional CP antenna has bandwidths of 41%
(1.65-2.5 GHz) for axial ratio < 3 dB and 45% (1.58-2.5 GHz)
for returnloss > 10 dB. The gain variation in the omnidirec-
tional plane is less than 1 dB for the frequency range from 1.65
to 2.5 GHz. Good agreement is obtained between simulated and
measured results.

Index Terms—Broadband antenna, circularly polarized (CP) an-
tenna, mobile communications, omnidirectional antenna.

I. INTRODUCTION

MNIDIRECTIONAL linearly polarized (LP) antennas

have been widely used in base stations of mobile com-
munications because they can reduce the number of cell sectors
and the effects of small sector variations. Circularly polarized
(CP) antennas have an advantage over traditional LP antennas
in that CP antennas can enhance the stability of signal recep-
tion by receiving arbitrarily LP signals. The use of circular
polarization can also suppress the effect of multi-path reflection
of waves caused by building walls and the ground surface.
It was demonstrated that an omnidirectional CP antenna can
enhance signal reception in land mobile systems [1]. Several
measurement campaigns have demonstrated that CP antenna
always outperform LP antennas in mobile communication en-
vironments [2]-[4]. “While the use of a CP antenna is probably
not feasible in a small hand held device due to size constraints,
the use of CP antennas at the base station could be beneficial.”
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[3] The main reason for wide use of LP antennas nowadays
instead of CP antennas is probably that it is much easier to
implement a LP antenna than a CP antenna, especially for a
broadband operation. We hope our work could help improve
this situation and re-inspire the interest in CP antennas for
mobile communications. Omnidirectional CP antennas may
also find applications in television broadcasts, mobile satellites,
and space vehicles such as airplanes, missiles, rockets, and
spacecraft [S]-[10]. For modern mobile communications, base
station antennas must have a wide bandwidth. For example, the
2G/3G systems require covering the frequency range from 1.71
to 2.17 GHz. Therefore, a bandwidth of at least 25% is needed
for 2G/3G base station antennas. The purpose of this paper is
to demonstrate a new broadband omnidirectional CP antenna
configuration.

In recent years, a number of topologies for omnidirectional
CP antennas have been investigated. A CP omnidirectional an-
tenna consisting of a vertical sleeve dipole and three pairs of
tilted parasitic elements was reported in [11], which has a band-
width of 6.9% for axial ratio (AR) <3 dB. A small helical CP
omnidirectional antenna was proposed in [12]. It has a wide
bandwidth for AR, but a narrow bandwidth for return loss (RL)
(~3% for RL > 10 dB). A dipole antenna in the form of DNA
strands was developed in [13] to give an omnidirectional pat-
tern in circular polarization. But its bandwidth is less than 3%.
A three-element polarization-adjustable (including CP) dipole
array is presented in [14], but the maximum AR is approxi-
mately 9 dB in the operating frequency band (1850-1990 MHz)
and the dipole array leads to a bigger antenna size than one
wavelength in diameter (Ag, where Aq is the free-space wave-
length at the center frequency of an operating frequency band).
Several low-profile topologies have been reported in [15]-[17].
A patch antenna produces a vertically polarized wave while
four horizontal arms attached around the patch generate a hor-
izontally polarized wave; hence an omnidirectional CP wave
can be excited by adjusting the length of the arms. However,
the patch antenna usually has a narrow bandwidth, leading to a
narrowband omnidirectional CP antenna (bandwidth <5%). In
[18] and [19], two strip/slot cylindrical omnidirectional CP an-
tennas were developed for mm-wave applications, but the an-
tennas have a quite large electrical size (~4.7X¢ in diameter
[18]) and a narrow bandwidth (0.8%), not suitable for base sta-
tion antennas. A back-to-back patch configuration was proposed
for an omnidirectional CP antenna in [20], which has the ad-
vantage of low-profile and simple structure, but the topology
leads to a poor omnidirectivity and a narrow bandwidth (1.3%
for RL > 10 dB). In [21], an eight-element CP patch array was
used to construct an omnidirectional CP antenna by wrapping
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around a dielectric cylinder. The wraparound omnidirectional
CP antenna has a diameter of ~2)y and a narrow bandwidth
(~2%). Therefore, this paper proposes to develop a broadband
omnidirectional CP antenna with a low cross section.

The broadband omnidirectional CP antenna developed con-
sists of four printed broadband CP rectangular loop elements
and a feeding network. The rectangular loop elements have an
aspect ratio of ~10/3, leading to a low cross section with a more
compact and cylindrically conformal configuration when such
four printed rectangular loop elements are rolled into a hollow
cylinder. The broadband CP rectangular loop element was de-
veloped in [22]. A bandwidth of ~50% for circular polariza-
tion has been achieved. Therefore, it should be possible to re-
alize a broadband omnidirectional CP antenna if the rectangular
loop element is employed as a radiating element for omnidi-
rectional CP antenna. A conducting cylinder is introduced in-
side the hollow cylinder formed by the four rectangular loop
elements to improve the CP performance. A feeding network
is designed to excite the four CP rectangular loop elements.
The antenna structure and its performance will be described in
Section II. The effect of the conducting cylinder and the oper-
ating principle of the feeding network will be investigated in
Section III. An experimental verification will be presented in
Section IV.

II. ANTENNA STRUCTURE AND PERFORMANCE

Fig. 1 shows the configuration proposed for a broadband
omnidirectional CP antenna. The configuration includes four
broadband CP rectangular loop elements and a feeding net-
work. The four rectangular loop elements are first printed on a
thin flexible dielectric substrate and then rolled into a hollow
cylinder [Fig. 1(a)]. The omnidirectional CP antenna was
designed at the frequency band centered at 2 GHz for 2G/3G
mobile systems. The diameter (D1) of the hollow cylinder
is 57.2 mm (0.38; at 2 GHz), much smaller than most of
traditional omnidirectional CP antennas. The geometry of each
CP element is displayed in Fig. 1(b). There is a pair of small
gaps on the primary loop for the excitation of a traveling-wave
current which is required for the generation of a CP wave. A
pair of parasitic loops (with a gap for each loop) is introduced
inside the primary loop to enhance the bandwidth of the CP
element. More details for the broadband CP element can be
found in [22] and [23].

The CP rectangular loop element alone is a bidirectional ele-
ment which radiates a left-handed (LH) CP wave, for example,
in one direction and a right-handed (RH) CP wave in the op-
posite direction. Usually a conducting reflector (or a ground
plane) is placed below or above the loop plane to realize a unidi-
rectional radiation pattern. For an omnidirectional CP radiation
pattern, we introduce a conducting cylinder inside the hollow
cylinder. The conducting cylinder acts as a cylindrical reflector.
A gap is introduced at the middle of the conducting cylinder
to leave a space for the feeding network. The sizes of the con-
ducting cylinder have significant effects on the CP performance,
which will be discussed in the next section. The technique of
placing four antenna elements around a tower (which is a re-
flector itself, or reflectors are placed between the antennas and
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Fig. 1. Configuration of a broadband omnidirectional circularly polarized (CP)
antenna: (a) perspective view; (b) broadband cp element; (c) feeding network.

the tower) has been used for a long time in FM radio and TV
broadcast [5].

The feeding network designed to excite the broadband om-
nidirectional CP antenna comprises four broadband baluns and
an impedance matching circuit, as illustrated in Fig. 1(c). The
broadband balun converts an unbalanced microstrip line to a
balanced feed at the “Driving point” of the CP loop element.
The matching circuit connects four broadband baluns to a 50-2
coaxial line at the “feed point” [see Fig. 1(c)]. The operating
principle of the feeding network will be described in Section III.

The broadband omnidirectional CP antenna with feeding net-
work was simulated and optimized using HFSS v11. The op-
timized geometric parameters are summarized in Table 1. The
simulated return loss (RL) is plotted in Fig. 2. The bandwidth
for RL>10 dB is about 40% (1.63-2.43 GHz). The gain patterns
in the horizontal plane (i.e., the zy plane) simulated at 1.7, 2.0,
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TABLE I
OPTIMIZED GEOMETRIC PARAMETERS FOR THE BROADBAND
OMNIDIRECTIONAL CP ANTENNA

Lc 235 mm CD 2.75 mm
DI 57.2 mm DE 3.75 mm
D2 16 mm EF 14.25 mm
Ll 115 mm wg 14 mm
L2 45.5 mm wl 0.7 mm
wi 35 mm w2 0.5 mm
w2 20 mm w3 1.5 mm
s 9.2 mm ws 1.6 mm
s2 10.7 mm Is 16.8 mm
0OA 4.75 mm g 10 mm
AB 4.75 mm hf 1.5 mm
BC 20.5 mm wf 2.7 mm
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Frequency (GHz)

Fig. 2. Simulated return loss for the omnidirectional CP antenna.

and 2.4 GHz are depicted in Fig. 3 for the LHCP component (the
copolarization) and for the RHCP component (the cross-polar-
ization). It is seen that the gain variation for the copolarization in
the horizontal plane is less than 1 dB; therefore, we also call the
horizontal plane an omnidirectional plane. It was observed from
simulation that the gain variation in the omnidirectional plane is
less than 1 dB over the frequency range of 1.65-2.5 GHz. The
cross- polarization in the omnidirectional plane is more than
17 dB lower than the copolarization. The gain patterns in the
elevation plane (i.e., the xz plane) simulated at 1.7, 2.0, and
2.4 GHz are also depicted in Fig. 3 for the LHCP component.
The beamwidth in the vertical plane decreases as the frequency
increases. The reason for the decreased beamwidth is that the
electrical length of the omnidirectional antenna increases with
increasing frequency. The narrowed beamwidth in the vertical
plane leads to an increased gain due to the omnidirectional pat-
tern in the horizontal plane. The axial ratio (AR) averaged in
the omnidirectional plane plotted as a function of frequency is
shown in Fig. 4. It is found that the bandwidth for AR < 3 dB
is about 39% (1.67-2.47 GHz), wide enough to cover the fre-
quency bands for 2G/3G systems of mobile communications.
The omnidirectional gain (averaged in the horizontal plane) is
also plotted in Fig. 4. The gain increases from 1.5 to 4.5 dBi as
the frequency increases from 1.7 to 2.4 GHz.
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Fig. 3. Simulated gain patterns for the omnidirectional CP antenna: (a) LHCP
in the horizontal plane (i.e., the zy plane); (b) RHCP in the horizontal plane
(i.e., the xy plane); (c) LHCP in the elevation plane (i.e., the zz plane).

III. PARAMETRIC STUDY AND ANALYSIS

A. Conducting Cylinder

As mentioned in the previous section, the purpose for the
introduction of the conducting cylinder is to improve the CP
performance of the omnidirectional antenna. In this section, we
first investigate how the geometric parameters of the conducting
cylinder affect the antenna performance. Fig. 5(a) shows the de-
pendence of the axial ratio (AR, averaged over the omnidirec-
tional plane) on the diameter (D2) of the conducting cylinder. It
is seen that if without the conducting cylinder (i.e., D2 = 0), the
AR at the center frequency (2 GHz) is larger than 12 dB. When
the conducting cylinder is introduced, the AR performance is
improved. As the diameter D2 increases from 8 to 16 mm, the
AR decreases from ~6 dB to less than 3 dB at 2 GHz. And
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Fig. 5. Dependences of (a) axial ratio and (b) return loss of the omnidirectional
CP antenna on the diameter of the conducting cylinder.

there is a bandwidth of 39% (1.67-2.47 GHz) for AR < 3 dB
atD2 = 16 mm (~ 0.1Xg). However, as D2 further increases to
D2 = 24 mm, the AR at 2.3 GHz increases to more than 3 dB.
Therefore, we choose D2 = 16 mm as the optimal value for the
diameter of the conducting cylinder. The diameter of the con-
ducting cylinder has no significant effect on the return loss of
the omnidirectional CP antenna as demonstrated in Fig. 5(b).
The dependence of the CP performance on the diameter of
the conducting cylinder can be understood by considering the
cylinder as a cylindrical reflector. For a planar CP loop antenna,
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Fig. 6. Dependences of (a) axial ratio and (b) return loss of the omnidirectional
CP antenna on the length of the conducting cylinder.

a conducting planar reflector can be introduced for a unidirec-
tional CP radiation pattern. By analogy, for a cylindrical CP
loop antenna, a conducting cylindrical reflector is introduced
for an omnidirectional CP radiation pattern. If the diameter of
the cylindrical reflector is too small, it cannot play the role of a
reflector; thus, the desired CP performance cannot be achieved.
If the diameter of the cylindrical reflector increases, the distance
between the reflector and the cylindrical CP loop elements de-
creases. It has been demonstrated that the CP performance of a
planar CP loop antenna becomes worse as the distance between
the CP loop and its reflector decreases [23]. Therefore it is un-
derstandable that the CP performance of the omnidirectional CP
antenna also becomes worse as the diameter of the conducting
cylinder increases.

The length (Lc) of the conducting cylinder has to be longer
than the length (L1) of the CP rectangular loop elements. There
is an optimal value for the length Lc where the AR is less than
3 dB over the frequency range of 1.67-2.47 GHz. As indicated
in Fig. 6(a), the optimal value for Lc is found to be Lc =
235 mm (~1.6)g). Fig. 6(b) shows that the return loss of om-
nidirectional CP antenna is not sensitive to the length Lc.

The CP performance of the omnidirectional antenna is also
dependent on the length (g) of the gap at the middle of the con-
ducting cylinder, as illustrated in Fig. 7(a). The optimal value for
the gap length is found to be g = 10 mm (~0.068\q). Fig. 7(b)
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Zp=170Q2

Feed point
Zo=50Q

Fig. 8. Equivalent circuit for the feeding network of the omnidirectional CP
antenna.

demonstrates that the gap length has no significant effect on the
return loss of the omnidirectional CP antenna.

B. Feeding Network

To understand the operating principle of the feeding network
for the omnidirectional CP antenna, a simple equivalent circuit
for the feeding network is depicted in Fig. 8. The broadband
balun for a rectangular loop element is simplified as a 70-{2
lumped impedance since the input impedance [looking at Point
D from the unbalanced microstrip line, see Fig. 1(c)] of the
broadband balun was designed to be 70 €2. The theoretical anal-
ysis of the broadband balun can be found in [24], [25]. Here
we focus on the analysis of the matching circuit which con-
nects four 70-$2 lumped impedances to a 50-2 coaxial line. First
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s

Fig. 9. Prototype of the broadband omnidirectional CP antenna with front and
back views of the feeding network.

the 70-€) impedance (Zp = 70 §2) at Point D is transformed
into a 200-(2 impedance (Z4 = 200 (2) Point A by a 120-Q
quarter-wave transformer (v/Zp x Z4 =~ 120 Q). Then two
200-92 impedances Point A are connected in parallel, resulting
in a 100-€? impedance. The 100-C2 impedance is connected to
the 50-2 coaxial line through a 100-§2 impedance microstrip
line. Finally two 100-§? impedances at the “Feed point” (see
Fig. 8) are connected in parallel, leading to a total impedance
of 50 €2 and matching to the 50-£2 coaxial line.

IV. EXPERIMENTAL VERIFICATION

The broadband omnidirectional CP antenna was fabri-
cated and measured. Fig. 9 shows the picture of a pro-
totype of the antenna with front and back views of the
feeding network. Four rectangular loop elements were first
printed on a Panasonic R-F775 flexible dielectric substrate
(e: = 3.2, losstangent = 0.0015, thickness = 0.05 mm)
and then rolled into a hollow cylinder. The feeding net-
work was printed on a Taconic TLY-5 dielectric substrate
(e: = 2.2, losstangent = 0.0009, thickness = 0.8 mm).
The conducting cylinder was made of a piece of copper foil.
A flexible coaxial line (Johnson/Emerson RG178) with an
SMA connector is connected to the feeding network through
the inside of the conducting cylinder. Two pairs of Styrofoam
flat washers (thickness = 5 mm) are inserted into the space
between the hollow cylinder and the conducting cylinder to fix
the conducting cylinder at the center of the hollow cylinder.

The measured result for return loss (RL) is compared with
simulation result in Fig. 10. Good agreement is observed. The
measured bandwidth for RL > 10 dB is 45% (1.58-2.5 GHz).
The measured axial ratio (AR) averaged in the omnidirectional
plane is compared with simulation result in Fig. 11. Agreement
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is obtained. The measured bandwidth for AR < 3 dB is 41%
(1.65 GHz-2.5 GHz), which is overlapped with the bandwidth
for RL. Fig. 12 shows the measured gain compared with sim-
ulated result, which confirms that the gain increases with in-
creasing frequency. The simulated and measured results agree
well with each other except at higher frequency band (2.3-2.4
GHz) where the coaxial line has a larger attenuation. Fig. 13
shows the measured gain and AR patterns in the omnidirectional
plane (i.e., the zy plane) at 1.7, 2.0, and 2.4 GHz. We can see
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that the gain variation is less than 1 dB and the AR is less than
3 dB. For mobile communication base station applications, an
antenna array is required, similar for an FM or TV transmitting
array. This will be our future work.

V. CONCLUSION

A broadband omnidirectional CP antenna is developed using
four broadband CP rectangular loop elements. The rectangular
loop elements are first printed on a flexible thin dielectric sub-
strate and then rolled into a hollow cylinder, which has a diam-
eter of 0.38)\, corresponding to a more compact configuration
than most of traditional omnidirectional CP antennas. A con-
ducting cylinder is introduced inside the hollow cylinder to im-
prove the CP performance. A broadband feeding network is de-
signed to feed the four broadband CP rectangular loop elements.
The omnidirectional CP antenna achieves a bandwidth of 45%
(1.58-2.5 GHz) for return loss > 10 dB and a bandwidth of 41%
(1.65-2.5 GHz) for axial ratio <3 dB. The gain variation in the
omnidirectional plane is less than 1 dB. Experimental results
validate the development of the broadband omnidirectional CP
antenna, which allows the antenna element be arrayed for base
stations of 2G/3G mobile communication systems.
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