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Abstract—A novel antenna configuration for quad-band oper-
ation is presented. The quad-band antenna has a directional ra-
diation pattern in four frequency bands, i.e., B1 (800-900 MHz),
B2 (1.7-2.5 GHz), B3 (3.3-3.6 GHz), and B4 (5.1-5.9 GHz), cov-
ering all spectrums for existing wireless applications, such as GSM,
PCS, WCDMA, WiFi, and WiMax. The operating frequency of the
quad-band antenna can be adjusted by the use of a MEMS switch,
making it suitable for cognitive radio applications. First a switch-
able quad-band antenna element is introduced. Then a two-ele-
ment antenna array is developed to increase the antenna gain for
base station applications featuring a gain value of about 9-11 dBi
over all four frequency bands.

Index Terms—Base station antenna, cognitive radio, quad-band
antenna, switchable antenna.

1. INTRODUCTION

ITH the increasing demand for wireless connectivity,
W the radio frequency spectrum is getting more and more
crowded with applications satisfying communication needs for
public, private, and government sectors. The spectrum conges-
tion increases the cost of spectrum licensing, which ultimately
leads to a higher cost per bit for each user. Cognitive radio aims
to reduce spectrum congestion by sensing unused bandwidth
in the existing communication standards and opportunistically
maximizes the spectrum utilization for the end user [1]. In the
public communication sector, several bands are allocated to ex-
isting standards, such as GSM, PCS, WCDMA, WiFi, and the
recently adopted WiMax worldwide. It is advantageous to pro-
vide cognitive radio services that maximize the data delivery
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across those existing communication standards utilizing a single
base station antenna system.

To support the comprehensive and intelligent communica-
tion offered by cognitive radio architecture, a new paradigm
of RF front-end is needed [2]. Due to wide spectral bandwidth
utilization, reducing interference between the radios is critical
in improving their signal to noise ratio and the overall spectrum
usage. Thus RF front-ends need to limit its instantaneous
dynamic range to avoid non-linear distortion in the desired
channel [3]. Several authors have proposed antenna structures
that would reduce antennas’ dynamic range by the use of
switches [4]-[11]. Switchable antennas can be realized using
electronic switches, such as varactor diodes or MEMS switches.
Three types of switchable/reconfigurable antennas have been
implemented in the literature: polarization [4], [5], spectral
[5]-[9], and spatial [8]-[11]. For base station antennas, spatial
and spectral sensing are the two areas of interest.

In traditional base stations, several antenna techniques have
been established to enhance system capacity. 1) The antenna is
positioned with its E plane perpendicular to earth surface to uti-
lize ground reflections for increasing signal range. 2) To elim-
inate co-channel interference between adjacent towers and in-
crease spectrum reuse, spatial sectoring is implemented in the
antenna’s H plane. Horizontal beam width typically varies be-
tween 60°,90°, 120°, 180°, to 360° depending on the number of
sectors deployed [12]. 3) To further reduce the co-channel inter-
ference between adjacent towers and enhance signal strength to-
wards the mobile device, a narrow vertical beam width ranging
from 7° to 20° with beam tilting is desired. Thus an antenna
array needs to be extended vertically along its E plane. Such
array implementation is difficult to achieve in frequency agile
antenna designs since the electrical element spacing for each
frequency band must be almost the same in wavelengths to avoid
grating lobes. Grating lobe and side lobe formation results in
large signal variation in the service area, and should be reduced
unless the system can spatially reconfigure the null position to
its advantage. Due to grating lobe considerations, most existing
directional multi-band antennas cannot be easily extended to
array configurations along their E plane, because these antennas
share the same radiating element at different frequency bands
(51, 91, [13]-[15].

In this paper, a switchable multi-band two radiator element is
introduced and optimized to offer a sectored radiation pattern
in four frequency bands: 800-900 MHz (B1), 1.7-2.5 GHz
(B2), 3.3-3.6 GHz (B3), and 5.1-5.9 GHz (B4), used for GSM,
PCS, WCDMA, WiFi and WiMAX systems. This quad-band
two radiator architecture is “arrayable” because the radiating

0018-926X/$26.00 © 2010 IEEE
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Fig. 1. Configuration of a quad-band antenna element.

elements for each frequency bands can be readjusted along its
E plane. Its two element array will be presented to demonstrate
the possibility of beam width narrowing and beam tilting along
its E plane, as desired by base stations. Furthermore, this
quad-band antenna geometry has a compact form factor and
high scalability to incorporate additional frequency bands in
the future. Design and measurement results for the quad-band
antenna element are first introduced, followed by a description
of the system level requirement and the design process of the
quad-band array.

II. QUAD-BAND TWO RADIATOR ELEMENT

The configuration of the proposed switchable quad-band an-
tenna element is shown in Fig. 1. For B1, B2, and B3, there is
a pair of symmetrically positioned dipole arms in the y direc-
tion. The separation between the dipole arms is approximately
0.5 with X being the free-space wavelength at the center fre-
quency for each frequency band. Only a single dipole is used for
B4 because it is located exactly in the center of symmetry. The
dipole arm selected was based on “the printed broadband dipole
antenna with integrated balun” documented in [16]-[20]. It pro-
vides a simple broadband dipole structure with the capability to
easily tune the impedance matching. With this structure, the ra-
diation pattern of the quad-band antenna can be easily controlled
by the relative position of the dipole arms and the dipole length,
while the impedance matching is individually controlled by the
balun matching network.

The quad-band antenna has four ports as indicated in Fig. 1,
and is designed to be controlled by a TeraVicta SP4T MEMS
switch. A schematic of the MEMS switch system is shown in
Fig. 2, which includes a front-end amplifier (RFA), a digital con-
troller, and an SP4T MEMS switch. The MEMS switch imple-
mentation is an active area of research because it offers lower
loss, high isolation, and high linearity desired by the in RF front
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Fig. 2. A schematic of a switch system for the quad-band antenna element.

Fig. 3. A prototype of the quad-band antenna element.

end [21]. In this paper, the switch performance will not be cov-
ered and an ideal switch is assumed to be connected to the ports
of the quad-band antenna element.

The antenna was designed using Microstripes 7.5, a TLM
based commercial solver, with a Taconic RF35 substrate of
er = 3.5 and loss tangent = 0.0018. The dipole arms were
designed on 30 mils (0.762 mm) substrate to provide better
mechanical stability for standing perpendicular to the ground,
while the base board was designed on 20 mils (0.508 mm) to
allow narrower feeding lines on board. A feeding network was
designed for each frequency band, and 35 €2 quarter wavelength
transformers were used to split the input power into two 50 €2
antenna loads. To mimic the behavior of the MEMS switch,
non-active ports were left as open circuits in both simulations
and measurements. A prototype of the quad-band antenna el-
ement is pictured in Fig. 3. A 400 mm X 400 mm ground
plane was used to support the quad-band antenna. The opti-
mized dipole arms dimensions and dipole spacing are listed in
Table 1. The optimization was done in a three stage process:
1) radiation pattern and matching of individual dipole arms are
simulated in the four frequencies of interest, 2) the H-plane
radiation pattern is optimized by adjusting relative spacing of
the dipole, and 3) the balun transition of each dipole arm is
readjusted to tune the impedance after including the affects of
radiator spacing and feeding network.
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TABLE 1
DIMENSIONS OF THE QUAD-BAND ANTENNA ELEMENT (MM)

Dimensions Bl B2 B3 B4
Hd 95 40 25.2 15
Ld 170 76 45.6 27
wd 34 15 9 55
wg 68 30 18 11
ws 1 1 1 1
Hs 0 0 0 0
Hm 39.7 19.7 9.7 55
wm 1.7 1.7 1.7 1.7
Wm 36 16 11.6 8
Lm 26.7 10.7 3.7 4.5
Y 200 80 50 0
YB3=40mm
YB3=50mm
YB3=60mm
= YB3=70m
YB2=80mm
YB2=100m
YB2=120mm

270

(0)

Fig. 4. H-plane Radiation affected by (a) adjacent lower frequency dipoles,
effect of Y3 on B4 at 5.5 GHz, (b) grating lobe, effect of Yz on B2 at2.4 GHz.

To design the individual dipole arm, Ld of 0.5\ was chosen
for the printed dipole length elevated 0.25\ above the ground
plane (Hd). The dipole width Wd, which is half of Wg for
impedance matching, needs to be at least 3 times greater than
wm, the feed line width. This allows microstrip mode of the
feed line, and constant impedance between the ground to the ra-
diating dipole ends. By selecting H s = 0, and mainly adjusting
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Fig. 5. Simulated and measured return loss with measured gain of the quad-
band antenna element in B1 and B2.
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Fig. 6. Simulated and measured return loss with measured gain of the quad-
band antenna element in B3 and B4.

Hm and L'm, a wideband impedance match is obtained for a
single frequency band. Alternatively, the dimensions in [16],
optimized for B2 operation, can be resized for the other three
bands.

The goal of radiation optimization is to reduce drastic vari-
ations of the H plane pattern within the 10 dB beam width
by changing the radiator spacing, Y. Sidelobe-level at the
higher-frequencies H-plane and grating-lobe formation at
the lower frequencies H-plane are the radiation performance
tradeoffs when adjusting this parameter. High frequency side-
lobes are caused by excessively decreasing the spacing between
the adjacent lower frequency elements, thus increasing the
coupling between the dipoles and exciting more higher-order
modes. To illustrate this effect, Fig. 4(a) shows the increasing
sidelobe level and null formation at B4 due to the decreasing
spacing of Yp3. By increasing the adjacent dipole spacing, the
sidelobes can be reduced, but grating lobes may emerge for
these adjacent dipoles if the H plane spacing between the same
frequency radiators well exceeds 0.5\ [22]. The grating lobe
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Fig. 7. Measured E plane (x-cut) and H plane (y-cut) patterns (a) 850 MHz (b)
2 GHz, (c) 3.5 GHz, (d) 5.5 GHz of the RAE.

formation in Fig. 4(b) shows an increasing grating lobe level
in B2 as its dipole spacing, Ypo, increases. Based on these

TABLE II
MEASURED WORST CASE INSERTION LOSS BETWEEN TWO
RADIATOR ELEMENTS

B1 freq B2 freq B3 freq B4 freq
B1 input NA 24 dB 38 dB 31 dB
B2 input 33dB NA 34 dB 28 dB
B3 input 62 dB 17 dB NA 15dB
B4 input 48 dB 25 dB 36 dB NA

analyses, a sidelobe level less than 10 dB and a radiation ripple
of less than 4 dB is obtained for all four frequency bands.

After the optimized radiator spacing is obtained and the
feeding network is included in the base board, the integrated
balun dimensions are readjusted to accommodate the mu-
tual coupling and power divider effects on the initial dipole
impedance. Hm, Hs and Lm are the three most significant
dimensions when tuning the impedance bandwidth. In the
equivalent circuit of the balun transition [16], Hm-H s deter-
mines the shorted slot stub length, Hd-Hm determines the slot
length, and Lm determines the microstrip stub length.

The measured and simulated results for return loss are shown
in Figs. 5 and 6, featuring a value better than 10 dB in the fre-
quency bands of interest. Passive antenna gains are measured in
SATIMO and plotted in Figs. 5 and 6. A value of ~7-9 dBi is
observed at the center frequency for each frequency band. There
is a maximum of 2 dB variation across a wide bandwidth. The
measured radiation patterns are fairly constant across each fre-
quency band as shown in Figs. 7. Less than 20 dB cross-po-
larization is achieved across all frequency bands to ensure the
radiation linearity needed for base station. The simulated pat-
tern matches that of the measurement. Due to the finite ground
plane significant back radiation is observed for the pattern of
850 MHz. The ripples appearing at the radiation pattern for the
highest frequency band (i.e., B4) are due to the higher order
modes excited on the lower band dipoles.

Although the two radiator element is designed for switched
frequency operations, investigation in its simultaneous fre-
quency operation without the presence of the switch gives
further insight in the element’s performance. The isolation be-
tween the ports is critical in this case since one pair of radiator
may increase the noise level received by other pairs due to
higher order resonance and coupling. The minimum insertion
loss, characterizing the worst case isolation, is summarized in
Table II for each band of interest. Poor isolation from B1 to B2,
B3 to B2, B3 to B4, and from B4 to B2 indicates the need for
isolating components such as switches or filters to reduce the
noise formation.

III. QUAD-BAND TWO ELEMENTS E-PLANE ARRAY

To demonstrate the capability of the quad-band two radiator
element to extend to an array, a two-element array aligned in
the x direction is presented in Fig. 8. For each frequency band,
there are 2 x 2 dipoles; one dipole from each band is grouped in
a quadrant to be fed by a switchable amplifier similar to an ac-
tive integrated antenna topology. The novelty of the quad-band
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Fig. 8. Configuration of a quad-band antenna array.
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Fig. 9. An array of quad-band antenna element that would form grating lobes.

Fig. 10. A prototype of the quad-band antenna array.

antenna array lies in the use of additional symmetry enforce-
ment in the x direction to achieve good uniformity of radia-
tion pattern along its E-plane. The array is not the conventional
array implementation such as the one shown Fig. 9. If the orig-
inal quad-band antenna element is replicated and placed 0.5 A
(B1) from another element in the x direction like Fig. 9, strong
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TABLE III
DIMENSIONS OF THE QUAD-BAND ANTENNA ARRAY (MM)

Dimensions Bl B2 B3 B4
Hd 95 40 25.2 15
Ld 170 76 45.6 27
wd 34 15 9 5.5
wg 68 30 18 11
ws 1 1 1 1
Hs 0 0 0 0
Hm 39.7 17.7 9.7 5.7
wm 1.7 1.7 1.7 1.7
Wm 36 16 11.6 8
Lm 26.7 16.7 5.2 5.5

X 200 80 60 35
Y 200 80 50 24

grating lobes will emerge at the higher frequency bands because
the array separation at B1 is much larger than the free space
wavelength of B3 and B4. This topology provides locality in the
system level implementation while satisfying the array spacing
requirement. It can be further extended to n elements along the E
plane by symmetrically containing a pair of higher frequency el-
ements between the lower ones. Unlike the quad-band element,
no power splitter network was designed for the array due to the
crowded base board spacing. For simplicity and without loss
of generality, the design of the switchable amplifier will not be
covered in this paper.

The quad-band antenna array was also built on the RF35 sub-
strate. The dimensions of the quad-band antenna array are listed
in Table III. A prototype of the quad-band antenna array with a
600 mm x 400 mm ground plane is displayed in Fig. 10.

To characterize the impedance matching, active driving
impedance is measured to account for the mutual coupling
between the four driven ports. In broadside operation where
all ports are fed in-phase, the simulated and measured active
driving impedance in Figs. 11 and 12 achieves 10 dB across
the four frequency bands of interest. A Narda 4436-4 power
divider was used to create in-phase feeding for the passive ra-
diation pattern measurement in SATIMO. From the radiation
patterns shown in Fig. 13, a more directive pattern is obtained
in the E-plane compared to Figs. 7, with no significant grating
lobe formation. High linearity is achieved by having less than
—20 dB of cross polarization. The antenna gains of the array
shown in Figs. 11 and 12 are 9-11 dBi, about 2 dB higher
than the individual antenna element. Note that the antenna
gain was obtained by subtracting the power divider insertion
loss.

The elements in the quad band array has a different align-
ment in the x direction from the original element, thus the mu-
tual coupling between the radiators are different in the E-plane
array configuration and needs to be revisited. In the array case,
the highest coupling occurs within elements belonging to the
same quadrant. With the minimum insertion loss of 11 dB, the
measured worst case isolation summarized in Table IV also in-
dicates the need for isolators.
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Fig. 11. Measured and simulated return loss with measured gain (passive) of
the quad-band antenna array in B1 and B2.
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Fig. 12. Measured and simulated return loss with measured gain (passive) of
the quad-band antenna array in B3 and B4.

TABLE IV
MEASURED WORST CASE INSERTION LOSS BETWEEN 4 ELEMENTS IN THE
SAME AMPLIFIER QUADRANT

Mea co-pol
Mea x-pol
Bl freq B2 freq B3 freq B4 freq Sim co-pol
Sim x-pol
B1 input NA 25dB 26 dB 37 dB
B2 input 24 dB NA 19 dB 28 dB
B3 input 45 dB 11dB NA 28 dB
B4 input 44 dB 31dB 12dB NA

IV. CONCLUSION

Novel configurations of switchable quad-band two radiator
elements and its extended array are proposed. Their operating
frequencies cover all spectrums for existing wireless applica-
tions, such as GSM, PCS, WCDMA, WiFi, and WiMax. A con-
sistent H plane pattern suitable for sectoring is achieved by the
two radiator element across the four bands. The two element
array demonstrates narrowing of E plane beam width for re- along its E plane to reduce its vertical beam width, thus making
ducing the co channel interference between adjacent base sta-  the extension of this topology a suitable candidate for cognitive
tions. The quad-band array topology can be further extended radio base station.

Fig. 13. Measured and simulated E-plane (x-z plane) radiation patterns of the
quad-band antenna array. (a) 1 GHz. (b) 2 GHz. (¢) 3.5 GHz. (d) 5.5 GHz.
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