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Abstract—Enhanced optical transmission properties of a single
subwavelength slit in a metallic film is theoretically studied by the
Fabry-Pérot-like formula. By using the analytical model based on
a modal expansion method, reflection coefficient of electric field
amplitude of surfaces at two slit ends is thoroughly analyzed and
an empirical Fabry-Pérot-like formula is derived. Good agreement
between our formula and the experimental data is obtained. It is
shown that a simple Fabry-Pérot equivalent formula accounts for
extraordinary transmission satisfactorily, explaining all of the de-
tails of the observed transmission spectra: it is demonstrated that
the spacing of two adjacent resonant peaks in the spectra is linearly
proportional to the slit width. Also it shows that the linewidth of
these resonances increases with increase of the wavelength and is
in linear proportion to the slit width. Our Fabry-Pérot-like model
can also easily predict on many features of the extraordinary trans-
mission phenomenon.

Index Terms—Extraordinary transmission, Fabry-Pérot-like
formula, modal expansion method.

I. INTRODUCTION

R ECENTLY, the extraordinary optical transmission (EOT)
through narrow subwavelength apertures or slits perfo-

rated in a metallic film has attracted a lot of attention [1]–[26].
Since Ebbesen et al. [1] experimentally showed remarkable
light transmission through a metallic film with two-dimensional
(2-D) array of holes, the analogous structure with 1-D array of
subwavelength slits has been analyzed by many researchers [3],
[4], [7]–[11], [13], [16], [18], [20], [21], [23], [25], [26]. Many
different physical mechanisms of extraordinary optical trans-
mission in slit structures have been proposed. M. M. J. Treacy
presented a mechanism based on dynamical diffraction theory
[10]. Another explanation is the excitation of surface-plasmon
polaritons (SPPs) along the metal-dielectric interfaces [2],
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[3], [20]–[23]. From a microwave engineering point of view,
Medina et al. explained extraordinary transmission through ar-
rays of holes or slits from a simple transmission-line equivalent
circuit theory perspective [24], [26].

Schouten et al. [18] presented an experimental and theoretical
study of extraordinary optical transmission in a structure of thin
metal screen perforated by two subwavelength slits and Zhou et
al. [23] revisited the plasmon-assisted Young’s two-slit trans-
mission experiment by employing the finite-difference time-do-
main (FDTD) algorithm [27].1 When the transmissivity of an
isolated slit was adjusted to maximum, they observed total trans-
missivity is qualified to the contribution from a single slit alone
[23]. Therefore, investigations on properties of the light passing
through a single metallic slit are essential for understanding its
physical origin of the extraordinary transmission phenomena,
which has been analyzed and discussed both experimentally [9],
[12] and theoretically [5], [25].

The theory that a single slit is theoretically treated as a Fabry-
Pérot resonator formed by the slit with two open ends has been
reported to describe transmission resonance of the single slit [3],
[5], [7]–[9], [11]–[13], [17], [25]. However, a comprehensive
study of the reflection coefficient of high-reflection surfaces at
the two slit ends is still insufficient. Since standard Fabry-Pérot
formula can not be directly applied to modeling the single slit
structure [5], [16], the relationship between the single slit and
the conventional Fabry-Pérot resonator is still unclear. There
is not yet an equivalent Fabry-Pérot-like formula to give inter-
pretations on the transmittance spectrum characteristics of light
through the single slit.

In this work, through an analytical method based on a modal
expansion of the electromagnetic fields proposed in the previous
theoretical studies [5], [14], [15], [17], we derive electrical re-
flection coefficient of surfaces at two slit ends as a function of
the ratio between the wavelength and the slit width, and present
the Fabry-Pérot-like formula with modified Fabry-Pérot param-
eters. Employing this approach, we can explain all of the details
of the observed transmission spectra of the single slit and give
clear physical interpretations on the spacing of two adjacent res-
onant transmission peaks and the linewidth of the resonant trans-
mission peaks.

This paper is organized as follows. In Section II we com-
prehensively study the process of the light passing through the
slit and analyze the reflection coefficient of the electric field
amplitude of surfaces at two slit ends. Then an equivalent

1In this paper, a commercially available software developed by Rsoft Design
Group http://www.rsoftdesign.com is used for the numerical FDTD simulations.
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Fig. 1. (a) Schematic diagram of the single subwavelength metal slit in a thick metal screen with the definition of the parameters: the metallic screen thickness,
i.e., the slit depth �� �, the slit width ���, the incident angle ��� and the wave vector �� �. Dark gray corresponds to perfect electrical conductor, while light gray
corresponds to in-slit dielectric characterized by a dielectric constant �. (b) Contour plot of the electric field intensity distribution of a single metallic slit defined
by � � ��� �m, � � � �m. Incident TM-polarized plane wave with � � ��� �m, having incident angle � � � with the z axis. Brighter areas correspond to
higher intensity of the electric field and black areas stand for perfect electrical conductor.

Fabry-Pérot-like theoretical formula describing the normalized
transmissivity of a single metal slit is presented. In Section III,
this approach is applied to the subwavelength regime subse-
quently, where the theoretical results are calculated numerically
and compared with the results based on a modal expansion [5],
[17] and available experimental data [9]. Good agreement be-
tween our Fabry-Pérot-like formula and the experimental data
is obtained. As a result, it easily explains many features of the
resonant transmission phenomenon of a single slit. We have dis-
cussed the transmission resonance spectra in the subwavelength
regime. It is demonstrated that the spacing of two adjacent reso-
nant peaks is linearly proportional to the slit width. Also it shows
that the linewidth of these resonances increases with increase of
the wavelength and is in linear proportion to the slit width too.
Finally, we give the conclusions in Section IV.

II. THEORETICAL FORMALISM

We study a single subwavelength slit perforated in a metallic
film, assuming that the metallic film is perfect electrical con-
ductor (PEC). The geometry is sketched in Fig. 1(a), i.e., a
Cartesian coordinate system as shown, the coordinate origin lo-
cates in the middle axis of the single slit and the point C is at the
exit of the single slit ( , ). Dark gray corresponds
to perfect electrical conductor regions, while light gray corre-
sponds to in-slit dielectric region characterized by a dielectric
constant . The thickness of metallic screen (the slit depth) and
slit width are denoted as and , respectively. Hereby we only
consider the TM-polarized (magnetic field parallel to axis)
monochromatic plane wave having incident angle with the
axis. The wave vector is represented as .

A. Modeling of Extraordinary Transmission of a Single Slit

First, consider a single slit with the slit width m,
the slit depth m, dielectric material inside the slit is air
with dielectric constant , and a TM-polarized plane wave
with the wavelength of m normally illuminates the
slit, we analyze the resonant transmission effect of the slit by

virtue of the electromagnetic modal expansion method that was
presented in the literature [5], [14], [15], [17]. From the analyt-
ical model [17], the component of the magnetic field, the

component and component of the electric field inside
the slit ( and ) can be deduced as
follows:

(1)

(2)

(3)

where the amplitudes are calculated by the method of
moments [28], and refers to the
normalization factors when solving the Helmholtz equation of

inside the slit and it is equal to 1/2 if and 1 if
.

In the subwavelength regime with our parameters setting,
, the fundamental mode of transmission

have dominating contribution to the transmittance for a single
slit, other transmission modes are evanescent (surface waves,
corresponding to surface plasmons for finite conductivity) [5].
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So the value of component of the electric field intensity on
the center axis of the slit can be written in a simpler
form

(4)
and component is zero everywhere inside the slit. can
be obtained as follows:

(5)

is related to the scattering for the fundamental mode of trans-
mission at the input surface of the slit, while

(6)

corresponds to the scattering at the output surface of the slit,
where

(7)

is associated with admittance of the fundamental mode, and

(8)

denotes the bridge variable of the fundamental mode, con-
necting mode amplitude in the input surface with the output
side

(9)

is the self-interaction term of the fundamental mode coupled
inside the slit and

(10)
is the overlap integral between the incident plane wave and
the fundamental mode, which reduces to in the limit of
slit width much smaller than the free-space wavelength or
normal incidence having incident angle with the z axis.
Where , so and function

is the two-dimensional
Green’s function corresponding to the vacuum.

It is worth noting that the variable , the ratio between the
wavelength of the incident plane wave and the slit width

, is very important. The dimensionless variable denoted as
is named as the wavelength-width ratio.

Then we can write to an another form

(11)

expedient for calculations. Therefore, the electric field intensity
distribution around and inside the single slit is shown in the
contour plot of Fig. 1(b). It is apparent from Fig. 1(b) that an
open-ended slit cavity supports a series of standing wave modes
of the propagating electric field inside the slit region

, and provides strong resonant enhancement.

B. Reflection Coefficient of the Electric Amplitude at Slit Ends

As illustrated in Fig. 1(b), it is speculated that there are very
thin coating slabs near the entrance (exit) of the slit, in which the
incident plane wave passing through the narrow slit is mainly
scattered and almost perfectly reflected at both ends. Hereafter
we refer the coating slab near the entrance (exit) to the entrance
(exit) scattering region. And it is presumed that the actual phys-
ical process of the light through a single slit is as follows.

Assuming the amplitude of the electric field intensity of the
incident TM-polarized plane wave is , when the plane wave
impinges on the slit entrance, it is scattered and divided into two
parts in the entrance scattering region. One part goes directly
into the slit area with the electric field amplitude and the
other part is reflected with the electric field , where
is the transmission (reflection) coefficient of the electric field of
the entrance scattering region, defined as the ratio of the trans-
mission (reflection) electric field amplitude to the incident field
amplitude. Propagating wave inside the slit continues to
go forward with lossless transmission (perfect electrical con-
ductor) and reaches the exit scattering region, and then is scat-
tered by the exit scattering region and divided into two parts too.
One goes directly into the outside of slit with the electric field
amplitude , where is the transmission (reflection) co-
efficient of the electric field from the in-slit area to the outside
of slit. Similarly, the electric field amplitude of the second out-
going wave of the single slit from the exit scattering region is

.
Compared to the first outgoing wave with the amplitude

, the second outgoing wave is reflected twice more by
the scattering regions and travels a round-trip longer with an
optical path length inside the slit, taking the
perpendicular incident into account, where is the
effective refractive index of the dielectric inside the slit. More-
over the phase difference caused by the optical path difference
is

(12)

As a result, the complex amplitude of the electric field of the
second outgoing transmission wave is

(13)

Then, we obtain the transmissivity of the metallic single slit
as written in the conventional Fabry-Pérot formula

(14)

where is named as hyperfine co-
efficient, is the reflection coefficient of electric field am-
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Fig. 2. (a) Normalized transmittance �� � at the central exit ����� � of the single slit as a function of the slit depth �� � for the given parameters: the slit width
� � ��� �m, the dielectric material inside the slit is air �� � ��, normal incident TM polarization plane wave with 	 � ��� �m. (b) Reflection coefficient �
�
of electric field amplitude of the scattering regions as a function of the wavelength-width ratio ���. The triangle symbols represent the numerical calculation data
from Eq. (18) and the solid line is the nonlinear least square fitting curve. Normalized transmittance, reflectivity of the scattering regions and wavelength-width
ratio have dimensionless unit.

plitude from the inside of slit to the outside of slit and function
is the amplitude of the resonances associ-

ated with the incident electric field intensity value. It is crucial
that and are not constant but as functions of the wave-
length-width .

Seen from (14), when , the trans-
missivity of the single slit can reach its maximum

. Therefore, the resonant wavelength of
the th order mode of the single slit are given by the
following equation:

(15)

where is the order mode number, is the refrac-
tive index. And when , the transmissivity
of the single slit can reach its minimum

(16)

so, the ratio of the transmissivity maximum to minimum of the
single slit is

(17)

and the positive reflection coefficient of the electric field ampli-
tude of the scattering regions can be calculated

(18)

We focus on the component of the electric field inten-
sity at the point (C) at the central exit
of the single slit ( , ), where and

. So the trans-
missivity at the point C (0, ) is

(19)

Fig. 2(a) graphs the transmittance at the point C (0, )
as a function of the slit depth for the given parameters
unchange in Fig. 1(b) except for the variable slit depth . For
instance, as shown in Fig. 2(a), , the maximum of
the transmittance is the and the minimum
is , so ,
the reflection coefficient of electric field of the scattering region

is calculated to be
.

In the same way, by utilizing the above formulae to calcu-
late ratio of the maximum to the minimum of the transmittance

at the point C (0, ) with different wavelengths of in-
cident radiation and slit widths, we explore the reflection co-
efficient of the scattering region at the open ends of the slit
as a function of the wavelength-width ratio , as shown in
Fig. 2(b). The triangle symbols represent the numerical cal-
culation data deriving from (18) and the reflectivity increases
damped exponentially with the wavelength-width ratio . Cor-
respondingly, we use the exponential associate function

to fit the numerical cal-
culation results, the parameters using the nonlinear least square
fitting (NLSF) algorithm are obtained as follows:

with the level of 99.99% confidence. As you can see from
Fig. 2(b), the solid line is the NLSF curve. So the empirical
equation of the reflection coefficient of the scattering regions
in the subwavelength regime is

(20)
In [25], the electromagnetic wave with the wavelength

m illuminates a slit perforated in silver film with
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m, m, i.e., the wavelength-width ratio .
The reflectivity is estimated by the FDTD algorithm [27] to be

, while according to our theory the reflectivity
calculated from (20). They are almost same but the differ-

ence is mainly contributed by the finite conductivity effects such
as skin depth considering silver film in [25]. If the dimensions
of the single slit are several times larger than the skin depth of
the slit, the approximate model discussed in this paper provides
quantitative results for metals with finite conductivity, such as
silver or aluminum. This reflectivity value is very large, which
implies that the two scattering regions have abnormal high re-
flection coefficient of electric field amplitude in the subwave-
length regime through strong diffraction on resonance.

It is concluded that the conjecture from beginning that the
single slit can be treated as a Fabry-Pérot resonator consisting
of a dielectric body sandwiched by thin high-reflectivity coating
slabs on its two surfaces, is verified to be appropriate. And the
reflection coefficient of the coating is not yet constant, which
is different from the conventional Fabry-Pérot interferometer,
increasing with the increase of wavelength-width ratio .

C. Modified Fabry-Pérot Equivalent Formula

When the ratio approaches to zero, i.e., , res-
onant transmission peak locations of the single slit are in good
match with the resonant wavelengths of the simple Fabry-Pérot
model shown by (15). While is small but not zero, the trans-
mission peaks are shifted and broadened. For a single slit in
a perfect electrical conductor the degree of systematic shift in
wavelength-width ratio towards longer wavelengths is estimated
by Takakura [5] to be

(21)

where is the slit width, is the slit depth, and is the wave-
length-width ratio.

Another difference from the conventional Fabry-Pérot for-
mula is that the normalized transmittance value of resonance
peaks amplitude in (14) is linearly proportional to the
wavelength-width ratio in our modified Fabry-Pérot formula as
shown in Fig. 3. Employing the electromagnetic modal expan-
sion method, we calculate the amplitude of the resonant trans-
mission peaks demonstrated by the triangle symbols as depicted
in Fig. 3. Then we use linear fitting on the amplitude of resonant
transmission peaks and obtain the linear regression function of

with the variable wavelength-width ratio

(22)

As shown in Fig. 3, the solid lines are the linear fitting curves
of the resonances. From Fig. 3(a) where mm,

m and in the Fig. 3(b) where m, nm,
the same range of wavelength-width ratio from 55 to 260 in
the subwavelength regime, we also note that the linear regres-
sion coefficient and of

are independent of the slit width and the slit depth
concluded from results of linear regression fitting with dif-

ferent slit widths and slit depths. We now reduce (14) to a modi-
fied Fabry-Pérot formula of the normalized transmittance of the

Fig. 3. Normalized transmittance of resonance peaks of the single slit as a
linear function of the wavelength-width ratio ���. The triangle symbols repre-
sent amplitude of the resonant transmission peaks while the solid lines are the
linear fitting curves of the peaks computed with (a)� � ����mm, � � ���m
and (b) � � ��� �m, � � ��� nm, refractive index of dielectric inside the slit
� � 	 and normal incidence is assumed. Normalized transmittance and
wavelength-width ratio have dimensionless unit.

metallic single slit as a function of the wavelength-width
ratio

(23)

where , is the refractive
index of dielectric inside the slit, is derived from the em-
pirical equation (20), is the slit width, is the slit depth,
and as the result of an aperture effect is calculated from
the (21).

III. NUMERICAL RESULTS AND DISCUSSION

In order to compare with experimental data published by
Yang and Sambles [9] and numerical results of electromag-
netic modal expansion method published by J. Bravo-Abad
et al. [17], we adopt the same metal single slit parameters by
assuming m, mm and the same range of
wavelengths in the subwavelength regime.

First we compare two theoretical results of our Fabry-Pérot-
like formula and electromagnetic modal expansion method [17].
From the (23), we could get the numerical result of our Fabry-
Pérot-like formula about the normalized transmittance of
the single slit as a function of the wavelength-width ratio ,
as illustrated with the dash-dotted line in Fig. 4, while the solid
line is result of the electromagnetic modal expansion redrawn
from [17]. For observing the difference in more detail on the
resonant transmission peaks of two theoretical methods, inbox
of Fig. 4 shows the transmission peak at . Consequently,
we can see that the results of two theoretical methods are always
in agreement and residual mismatch is caused by no taking into
account the higher orders in the perturbation calculation in (21)
and the other (evanescent) cavity modes [5].

Then we compare result of our Fabry-Pérot-like formula with
experimental data adopted from Yang and Sambles [9] and sim-
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Fig. 4. Main: comparison of the normalized transmittance �� � of the single
slit calculated from the Fabry-Pérot-like formula and the electromagnetic modal
expansion. The numerical result of our Fabry-Pérot-like theory formula plotted
from the Eq. (23) (dash lines) is in agreement with analytical results of the elec-
tromagnetic modal expansion [17] (solid line), computed with � � ���� mm
and � � �� �m. Inbox: comparison of the resonant transmission peak at � �
��� with wavelength-width ratio as abscissas. Normalized transmittance and
wavelength-width ratio have dimensionless unit.

Fig. 5. Main: comparison of our Fabry-Pérot-like theoretical results with ex-
perimental data of resonant wavelengths and simulation results with FDTD,
with the order mode number as abscissa, computed with � � ���� mm,
� � �� �m. Inbox: Fabry-Pérot resonance wavelength details of the 10’th res-
onance mode number.

ulation results employing the FDTD algorithm [27]. As shown
in Fig. 5, the comparison of our Fabry-Pérot-like theoretical re-
sults with the experimental data and simulation results is plotted
with resonant mode numbers as abscissa, from 8 to 13 referred
to (15). Inbox of Fig. 5 shows the details of the Fabry-Pérot
resonance wavelength with 10’th order mode number. The six
filled circles are the experimental data of resonance wavelengths
adopted from Yang and Sambles [9], the six filled triangles on
the upper are the values of our Fabry-Pérot-like formula cal-
culated from (23) and the six filled squares are the simulation
results with FDTD [27].

As can be seen in this figure, this tiny mismatch is associ-
ated with the finite conductivity of the aluminum used in ex-
periment [9]. It is apparent from Fig. 5 that the relative de-
viation of the resonance wavelengths of our Fabry-Pérot-like
formula to the experimental data less than 2.0% is acceptable.

Fig. 6. Normalized transmittance of a single slit as a function of the wave-
length-width ratio of the incident radiation, computed with the same range from
3.5 to 12 with wavelength-width ratio ��� as abscissas, the same slit depth
� � � �m and two different values of the slit width �, 0.05 �m (a) and 0.2
�m (b). Normal incidence and � � 	 inside the slit is assumed. Normalized
transmittance and wavelength-width ratio have dimensionless unit.

So we conclude that the extraordinary optical transmission of
light through a single subwavelength slit can be depicted by the
Fabry-Pérot-like formula model. And the transmission charac-
teristics (linewidth of resonances, spacing of two adjacent reso-
nant peaks, etc) of the resonant transmission peaks can also be
calculated and described analytically by the equivalent Fabry-
Pérot formula.

A. Spacing of Two Adjacent Resonant Transmission Peaks

Now, we again focus on the single slit with m and
m as discussed in Section II. For comparing, we

consider another single slit with same slit depth m
and different slit width m. There is same dielec-
tric material air inside the slit with dielectric constant .
As shown in Fig. 6(a) with the slit width m and
Fig. 6(b) with the slit width m, computed with the
same range from 3.5 to 12 with wavelength-width ratio as
abscissas, the black (a) and red (b) continuous lines are analyt-
ical results of the electromagnetic modal expansion method and
the blue (a) and green (b) dash-dotted lines are the numerical
results of Fabry-Pérot-like formula plotted from the (23).

Supposing that two adjacent resonant wavelengths are and
, because all the slit resonance peaks are shifted

towards longer wavelengths, so and
are solutions of (15), where the mode number

and correspond to Fabry-Pérot resonant wavelength
and respectively.

Then we have the following equation

(24)

since , so

(25)
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the equation for the wavelength-width ratio can be expressed as

(26)

where is the spacing of the adjacent resonant transmission
peaks of a single slit and is calculated from (21). As can
be seen in Fig. 6(a) and Fig. 6(b), with the increase of the wave-
length-width ratio, the spacing of adjacent resonant transmis-
sion peaks increases quadratically.

And (26) shows that supposing that the wavelength-width
ratio is same or approximately same, then the interval is
linearly proportional to the slit width . For instance, as the
Fig. 6(b) m shows, the difference of the neighboring
resonant transmission peaks at and
is . Within this range, considering the slit width

m as shown in Fig. 6(a), there are five resonant
transmission peaks, that is , , ,

and respectively, whose average interval
from each other is . As a
matter of fact, of the single slit with m is about four
times as much as that of the single slit with m, which
is accordance with the ratio of two slit widths, that is .
So we can conclude that the spacing of two adjacent resonant
peaks in the spectra is obviously linearly proportional to the slit
width, with constant slit depth.

B. Full Width at Half Maximum

It is well known that the linewidth of resonances is quantita-
tively measured by the full width at half maximum (FWHM) of
resonant transmission peaks. It is worth noting that the shift to-
wards longer wavelengths of the resonance peaks is systematic,
so the resonances FWHM of conventional Fabry-Pérot theory
and modified Fabry-Pérot-like formula have same values. Let
stands for the phase FWHM of the resonant transmission peaks
and when the phase , the normalized trans-
mittance decrease from the peak value to the half value of the
maximum, i.e., . Thus, the equation is easy to be
obtained from the (14)

(27)

accordingly we can obtain the phase FWHM

(28)

As we know, the phase is in inverse proportion to the wave-
length concluded from the equation

(29)

so we can obtain the phase FWHM is

(30)

substituting (28) into the above equation, the corresponding
wavelength FWHM can be reduced as

(31)

and the equation of wavelength-width ratio FWHM can be
written as

(32)

where , is calculated by (20).
This is the physical explanation on why the wavelength-width

ratio FWHM increases with the increase of the wave-
length-width ratio shown in Fig. 6. For instance, Fig. 6(a) il-
lustrates, computed with the slit width m and the slit
depth m, the wavelength-width ratio FWHM
of the two resonant transmission peaks located at
and are obtained by substituting into (32) to
be 0.367 and 0.487, respectively. In addition, we can also see
from (32) that as for the same or approximately same wave-
length-width ratio, is in linear proportion to the slit width

, which is illustrated in Fig. 6. It indicates that the linewidth
of the resonance peaks is linearly proportional to the slit width.
So in physical application such as high-sensitivity microfluidics
detector, the linewidth of the resonance peaks can be adjusted to
decrease for higher resolution by reducing the width of the slit.

C. More Discussion

It can be seen from (20) that the reflection coefficient
of the electric field amplitude of surfaces at two slit ends can
not reach 100%. From the (20), we can conclude that the max-
imum limit is 0.941 if . It indicates that the high electric
field reflective effect of two thin high-reflectivity surfaces of the
single slit can not been perfectly achieved. With the increasing
of the wavelength-width ratio, the diffraction of two high-reflec-
tivity surfaces is stronger but with a limitation.

In this work, in order to analyze the structure more directly
and neglect typical finite conductivity effects such as skin depth,
we assume infinite conductivity for the metallic regions. If the
dimensions of the single slit are several times larger than the
skin depth, the Fabry-Pérot-like formula model proposed in this
paper provides at least a good approximate value for the metallic
slit with finite conductivity [8], such as silver or aluminum.
The role that metal loss plays increasing the reflectivity of elec-
tric field amplitude of surfaces at two slit ends. By decreasing
the dimensions of the single slit and increasing the skin depth,
the metal loss starts having a non-negligible contribution to the
reflectivity.

And the limitations of the theory we propose is only ap-
plicable in the subwavelength regime, i.e., , more
complex transmission spectra associated with rapid oscillations
appear when the wavelength of light is comparable to the slit
width [17].

IV. CONCLUSION

In this paper, a Fabry-Pérot-like formula model for studying
the enhanced optical transmission properties of a subwavelength
single slit has been presented. Employing the electromagnetic
modal expansion method, we have analyzed the electric field re-
flectivity of surfaces at two slit ends as a function of the ratio be-
tween the wavelength and the slit width and we derived a mod-
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ified Fabry-Pérot-like formula. Good agreement between our
Fabry-Pérot-like formula and the experimental data is obtained.

In addition, using the equivalent Fabry-Pérot-like formula is
reasonable and particularly expedient for elucidating the trans-
mittance characteristics of the single slit. We have discussed
and studied the transmission resonances spectra in the subwave-
length regime. It is demonstrated that the spacing of two ad-
jacent resonant peaks is linearly proportional to the slit width.
Also it shows that the linewidth of these resonances increases
with increase of the wavelength and is in linear proportion to the
slit width too. We believe that the proposed theoretical Fabry-
Pérot-like formula can deepen the understanding of the intu-
itionistic physical picture of resonant enhancement transmission
of a single slit.
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