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ABSTRACT This paper proposes a bidirectional absorptive common-mode filter (A-CMF) for 5G ‘‘green’’
communication systems. The A-CMF is a balanced-to-balanced structure using interdigitated coupled lines
to replace normal double parallel-coupled lines for enhanced coupling and easy manufacturing. The resistors
are introduced to dissipate the common-mode (CM) noises into heat and thus to avoid the noises being
reflected and still existing in the communication system. This novel A-CMF features an intrinsic CM noises
absorption while maintaining its differential-mode (DM) filtering characteristics. As a proof-of-concept
demonstration, one microstrip prototype is fabricated in a two-layer printed circuit board (PCB) and the
measurements are consistent with the simulations. The DM signals can pass through this A-CMF without
being attenuated from 1.38 GHz to 5.19 GHz but the CM noises are suppressed throughout the broad
frequency range between 0.72 GHz and 8 GHz. It is worth noting that this A-CMF realizes a wide band
with 90% absorption efficiency of CM noises from 2.18 GHz to 4.97 GHz.

INDEX TERMS Absorptive common-mode filter (A-CMF), common-mode (CM), differential-mode (DM),
noise absorption, reflectionless filter, green communication.

I. INTRODUCTION
Compared to the current 4G network, 5G communication
systems need to support higher data rates, much broader
bandwidths, and massive connectivity. Thus, it’s extremely
important to cope with the demands of intense user and
energy consumption. Ascending ‘‘green’’ communication
approaches not only meets the 5G standards but also benefits
the environment and human health. To cater for ‘‘green’’
5G implementations, numerous technologies for power allo-
cation and energy efficient have been proposed including
massive multiple input multiple output (MIMO), internet of
things (IoT), ambient energy harvester (EH), and so on.

There will be a strong requirement for massive connectiv-
ity in the future IoT and massive MIMO scenarios, where
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the device activity patterns are typically sporadic. By utiliz-
ing compressed sensing techniques, the activities of devices
can be easily detected by the base station [1]. In this way,
the devices are designed being ‘‘hibernating’’ most of time
for saving energy and operate once being activated. In most
of the proposed approaches for energy efficient implemen-
tations, the main attention has been paid on optimizing the
allocation. In addition, sensors forming the wireless sensing
networks in the IoT are typically in very large numbers
while being power hungry. Energy self-sustaining wireless
sensing networks have been presented and an EH has been
designed to simultaneously illuminate RFID tags with the
output RF second harmonic signal and drive a RF amplifier
with the output dc power [2]. Noting that it’s the first time
the proposed RF EH utilizes not only the dc power but also
the second harmonic signal. A wearable EH has also been
reported, which can harvest high RF energy and transfer
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the ‘‘hotspots’’ energy into high dc voltage and power [3].
Plus, a wideband and high gain antenna has been proposed
for low energy density far-field RF energy harvesting [4].
Through those energy-saving techniques, the EH ‘‘recycles’’
ambient RF energy and realizes energy autonomy. Therefore,
noise suppression and noise absorption techniques over wide
frequency ranges have attracted an increasing attention since
the common-mode (CM) noises are a kind of RF energy
commonly existing in communication systems.

High-frequency CM noises induce electromagnetic inter-
ference (EMI) or radio frequency interference (RFI) emis-
sion, which do great harm to the electronic systems especially
when they are radiated by antennas. Thus, the noise-induced
issues are a great challenge for the massive implementation
of truly ‘‘green’’ 5G systems. That is why typical low noise
amplifiers are widely researched [5], [6]. Due to the noise fig-
ure being a key performance factor for low noise amplifiers,
a generalizedmultibandmatching network has been proposed
and a triband low noise amplifier has been fabricated using
a novel impedance matching structure [5]. By employing
a common-gate-common-source balun topology, a broad-
band low noise amplifier has been also put forward [6].
Furthermore, differential topologies have attracted a signif-
icant attention due to their inherent immunity to the environ-
mental noises and electromagnetic interferences.

Many balanced RF front-end components have been
introduced including balanced antennas [7], [8], balanced
filters [9]–[14], and balanced power dividers [15]–[17].
By using textile substrates, a patch antenna and a low
noise amplifier have been integrated into an active receiv-
ing antenna with optimized noise characteristics [7]. A self-
filtering low-noise horn antenna has been introduced, which
can self-filter the captured noises [8]. Based on stepped-
impedance resonators (SIRs), balanced bandpass filters fea-
ture high selectivity and CM suppression by loading a
capacitor or a resistor on the SIR [9]. A balanced bandpass
filter has been presented with high CM suppression, tunable
operating frequency, and constant bandwidth [10]. A compact
differential ultra-wideband bandpass filter has been brought
out with CM suppression [11]. Using dual-mode ring res-
onators, two balanced filters have been proposed with wide-
band CM suppression capabilities [12]. By introducing an
embedded defected ground structure, a varactor- and stub-
loaded dumbbell-shaped resonator has been used in a dual-
band differential filter for CM suppression [13]. High CM
suppression for a balanced dual-band bandpass filter has
been acquired by using a planar via-free composite right-/
left-handed resonator [14]. A planar compact single-ended-
to-balanced power divider has been put up with high
suppression of the CM noises [15]. Based on balanced archi-
tectures, filtering power dividers have been proposed with
broadband CM suppression [16] and enhanced in-band CM
suppression [17]. All mentioned balanced components above
focus on the CM noise suppression. However, the suppressed
CM noises are reflected and still exist in the communication
system. The concept of the noise absorption is ‘‘green’’ and

FIGURE 1. The schematic diagram of the propagation of CM noises in a
RF front-end with R-CMF or A-CMF.

totally different from the noise suppression to an effectively
complete extinction of the RF CM noise from the system.
Namely, the RF CM noises are used up and no longer existing
in the system. The noise absorption technique enables a new
form of ‘‘green’’ technologies that the RF components absorb
the noise and interference energy.

To address electromagnetic interference and RF interfer-
ence problems in RF differential systems, several absorptive
common-mode circuits have been recommended [18]–[26].
A broadband CM noise absorption circuit has been put
forward using resistors for high-speed differential digi-
tal systems [18]. Afterwards, several balanced-to-balanced
power dividers have been introduced with CM noise absorp-
tion characteristic based on resistors [19], [20] and mode-
conversion approach [21].

As shown in Fig. 1, the reflective common-mode filter
(R-CMF) is normally devised to reflect CM noises back to
the previous blocks of circuits. Thus, CM noises inevitably
incur RFI problems to further degrade the system perfor-
mance. In order to implement energy-efficient communica-
tion systems, the absorptive common-mode filter (A-CMF)
has been invented in recent years to eliminate the reflected
CM noises. A planar wideband bandpass filter realizes the
function of CM absorption together with the performance
of bandpass filtering for the first time [22]. This A-CMF
has a consistent bandwidth for both differential-mode (DM)
filtering and CM absorption. Hereafter, the CM absorption
efficiency at the operating frequency has been defined for the
first time and 96% absorption efficiency has been reached
using resistors [23]. Instead of using resistors or resistive
materials, a resistor-free A-CMF was brought up later using
the dielectric loss of PCB for CM noise absorption [24].
Here, a gap-coupled resonator was adopted to achieve noise
absorption and was fabricated in a four-layer PCB. All men-
tioned techniques above realize CM noise absorption by
using resistors or lossy dielectric. Nevertheless, the broad-
band absorption and high absorption efficiency are still very
hard to obtain simultaneously. Recently, an A-CMF with
a broad 95% absorption band was realized in a four-layer
PCB [25]. This approach extended two absorption frequency
bands into a single broad band and finally provided 95%
absorption efficiency through a wide band. Subsequently,
a bidirectional A-CMF was achieved by using a patterned
ground structure in a two-layer PCB [26]. Moreover, 98%
absorption efficiency and a broadband CM suppression were
achieved.
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FIGURE 2. The 3D structure of the proposed A-CMF on the substrate of
RO4350B.

In this paper, a bidirectional A-CMF is proposed and
fabricated in a two-layer PCB using three-stage microstrip
lines and four resistors. By adopting interdigitated coupled
lines to replace the normal double parallel-coupled lines, the
A-CMF can be easily manufactured. The introduced resis-
tors in the symmetrical horizontal line dissipate CM noises
into heat without affecting DM filtering performance. Using
the even- and odd-mode design approach, the equivalent
even- and odd-mode bisections and the constraint rules are
obtained, while the effect of the main circuit parameters is
thoroughly analyzed. Finally, the circuit prototype is simu-
lated, fabricated, and the measured results agree well with
the full wave EM simulation results. It is worth mention-
ing that this A-CMF realizes a wide absorption band with
90% absorption efficiency of CM noises from 2.18 GHz to
4.97 GHz.

II. PROPOSED STRUCTURE AND ANALYSIS
The 3D structure of the proposed A-CMF is exhibited
in Fig. 2. It’s a four-port balanced-to-balanced differential
structure, where the signals flow into the right differential
input ports and flow out of the left differential output ports.
The differential signals flowing into the structure is filtered
but the CM noises flowing into the model is absorbed by the
resistors.

A. CONCEPT OF A-CMF
For a unidirectional A-CMF, the CM scattering parameters
(S-parameters) |SCC11| and |SCC21| at the operating frequency
need to be zero. |SCC11| being zero means that the CM noises
are dissipated inner the structure instead of being reflected at
the input ports. |SCC21| being zero promises the CMnoises are
attenuated and failed to be transmitted. Under these require-
ments, resistors are necessary in the CM equivalent circuit.
For a bidirectional A-CMF, an extra CM S-parameter |SCC22|
at the operating frequency is demanded to be zero. |SCC22|
being zero means that the CM noises are dissipated inner the
structure instead of being reflected at the output ports.

FIGURE 3. The circuit structure of the proposed A-CMF.

In addition, the DM S-parameter |SDD11| need to be zero
and |SDD21| to be 1 to protect the integrity of the DM signals
from attenuation. Moreover, the CM noise absorption effi-
ciency is defined by 1-|SCC11|2-|SCC21|2, which can represent
the absorption ability of the A-CMF.

B. PROPOSED STRUCTURE
The circuit structure of the novel A-CMF is indicated
in Fig. 3. It is a three-stage architecture symmetric with
respect to the horizontal line. The differential input ports are
defined by ports 1 and 2 and the differential output ports
are defined by ports 3 and 4. The first- and third-stage are
comprised of coupled lines with the even- and odd-mode
characteristic impedances of Ze and Zo and branch lines with
the characteristic impedances of Z1, Z2, Z3, and Z5, respec-
tively. The second middle stage is consisted of branch lines
with the characteristic impedances of Z4 and Z6 cascadedwith
two resistors R1 and R2. Extra two grounded resistors R are
located at the first- and third-stage for CM noise absorption.
All the electrical lengths of the microstrip lines are selected
as θ (=90◦) at the operating frequency.
As the proposed circuit structure is a reciprocal four-port

network, the mixed S-parameters matrix (Sm) can be repre-
sented by the single-ended S-parameters matrix (Sstd) [22].

Sm = ASstdA−1 (1-a)

Sm =


SDD11 SDD12 SDC11 SDC12
SDD21 SDD22 SDC21 SDC22
SCD11 SCD12 SCC11 SCC12
SCD21 SCD22 SCC21 SCC22

 (1-b)

A =
1
√
2


1 −1 0 0
0 0 1 −1
1 1 0 0
0 0 1 1

 (1-c)

Sstd =


S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

 (1-d)

For an A-CMF, the CM conditions should be satisfied by
the following (2). Noting that (2-a) is for bidirectional A-
CMF and (2-b) is for unidirectional A-CMF. Additionally,
the DM conditions are restricted by (3).

|SCC11| = |SCC22| = |SCC21| = |SCC12| = 0 (2-a)
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|SCC11| = |SCC21| = |SCC12| = 0 (2-b)

|SDD11| = |SDD22| = 0 (3-a)

|SDD21| = |SDD12| = 1 (3-b)

The following derivations take the bidirectional A-CMF
for example. Supposed that DM signals (CM noises) will not
convert into CM noises (DM signals). That is,

|SCD11| = |SCD22| = |SCD21| = |SCD12| = 0 (4-a)

|SDC11| = |SDC22| = |SDC21| = |SDC12| = 0 (4-b)

Based on (2-a), (3), and (4), the S-parameters matrix of the
four-port network can be simplified.

Sstd =


0 0 −S41 S41
0 0 S41 −S41
−S41 S41 0 0
S41 −S41 0 0

 (5)

Finally, the S-parametersmatrix of the even- and odd-mode
equivalent circuit are acquired.

Seven =
[
SCC11 SCC12
SCC21 SCC22

]
=

[
0 0
0 0

]
(6-a)

Sodd =
[
SDD11 SDD12
SDD21 SDD22

]
= −2S41

[
0 1
1 0

]
(6-b)

C. DIFFERENTIAL-MODE ANALYSIS
Under the DM signals excitation, the symmetrical horizontal
line is a perfect electrical wall and the corresponding odd-
mode equivalent circuit is depicted in Fig. 4(a). There is no
current flowing into the resistors. The electrical lengths of all
the microstrip lines are quarter of wavelength at the operating
frequency.

The equivalent DMbasic circuit as an inset in Fig. 4(b) con-
sists of a branch line with the characteristic impedance of Z6
and two cascaded double parallel-coupled lines with the even-
and odd-mode characteristic impedances of Ze and Zo. This
equivalent basic circuit is similar with the SIR introducing
three transmission poles in the passband [27]. The simulated
results of the basic circuit at 3.5GHz are provided in Fig. 4(b).
The four resonant frequencies with the |SDD11| valleys are
observed at 2.3 GHz (fTZ3), 3.1 GHz (fTZ1), 3.9 GHz (fTZ2),
and 4.7 GHz (fTZ4), respectively.

Compared with the basic circuit, a pair of short-ended
stubs with the characteristic impedance of Z2 are paralleled
at the two sides of the middle line constructing a pair of
extra transmission zeros (TZs). By introducing a pair of short-
ended stubs with the characteristic impedance of Z1 shunted
in the input and output ports, two additional TZs are achieved.
The odd-mode equivalent circuit can be categorized as a
stub-loaded multiple-mode resonator. Therefore, the circuit
simulations of the multiple-mode resonance behaviors are
shown in Fig. 5 and the corresponding circuit parameters are
listed in Table 1.

In Fig. 5, seven resonant frequencies with the valleys of
|SDD11| are observed at 1.1 GHz (fTZ6), 1.4 GHz (fTZ4), 2.2
GHz (fTZ2), 3.5 GHz (fTZ1), 4.8 GHz (fTZ3), 5.6 GHz (fTZ5),

FIGURE 4. (a) Equivalent circuit of the proposed A-CMF under the DM
signals excitation and (b) the circuit simulations of the DM basic circuit.

FIGURE 5. The ideal circuit simulations of the A-CMF with the DM
responses |SDD11| and |SDD21|.

and 5.9 GHz (fTZ7), respectively. The three TZs of fTZ2, fTZ1,
and fTZ3 are brought out by the basic circuit, fTZ6 and fTZ7
are introduced by the shorted stubs with the impedance of
Z2, fTZ4 and fTZ5 are contributed by the shorted stubs with
the impedance of Z1. Observed from the equation (6-b) and
the simulations, the odd-mode equivalent half-circuit is a
bandpass filter.

To investigate the frequency responses of the odd-mode
half-circuit, the circuit parameters of Ze, Zo, and Z6 are
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TABLE 1. The circuit parameters of the A-CMF with double
parallel-coupled lines.

FIGURE 6. The ideal simulated reflection coefficient |SDD11| of the A-CMF
with different circuit parameters: (a) different coupling coefficient of C ,
(b) different characteristic impedance of Z6.

selected with various values shown in Fig. 6. The coupling
coefficient is defined byC , which equals to (Ze-Zo)/(Ze+Zo).
As C decreases, the reflection coefficient |SDD11| is lower.
The two adjacent TZs of fTZ4 and fTZ6 merge into a TZ located
in the left as the similar with the two adjacent TZs of fTZ5 and
fTZ7 merge into a TZ located in the right. The middle fTZ1
disappears as C increases. In Fig. 6(b), the simulated |SDD11|
decreases among fTZ2 and fTZ3, fTZ6 and fTZ4, fTZ5 and fTZ7

FIGURE 7. The ideal simulated reflection coefficient |SDD11| of the A-CMF
with different circuit parameters: (a) different characteristic impedance of
Z2, (b) different characteristic impedance of Z1.

but increases separately among fTZ4 and fTZ2, fTZ3 and fTZ5
while the impedance Z6 increases.
To provide a quantitative view on the effect of the two pairs

of the shunted stubs, the frequency responses with different
characteristic impedances of the stubs can be observed from
Fig. 7. The locations of the resonant frequency points are
constant so long as the electrical lengths are 90◦ without
change. In Fig. 7(a), the DM reflection coefficient |SDD11|
increases between fTZ2 and fTZ3 but decreases between fTZ4
and fTZ2, fTZ3 and fTZ5 while the characteristic impedance of
Z2 increases. Fig. 7(b) illustrates the DM reflection coeffi-
cient |SDD11| decreases with the characteristic impedance of
Z1 increases.

D. COMMON-MODE ANALYSIS
Under the CM signals excitation, the symmetrical horizon-
tal line is a perfect magnetic wall and the corresponding
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FIGURE 8. (a) Equivalent circuit of the proposed A-CMF under the CM
signals excitation and (b) the CM responses |SCC11|, |SCC21|, and |SCC22|.

even-mode equivalent circuit is shown in Fig. 8(a). The resis-
tances and the characteristic impedances of the microstrip
lines in the symmetrical line are twice of the original val-
ues. Besides, the electrical lengths of all the microstrip
lines are selected as 90◦ at the operating frequency. Further-
more, based on the corresponding circuit parameters listed
in Table 1, the CM responses at 3.5 GHz with bidirectional
absorption are plotted in Fig. 8(b). There are three TZs
at 2.6 GHz (fTZ2), 3.5 GHz (fTZ1), and 4.4 GHz (fTZ3),
respectively.

Observed from Fig. 9, the characteristic impedance of Z4
is a main variable affecting the CM absorption responses.
Moreover, the resistors R1 and R2 independently influence
the input CM absorption and the output CM absorption.
The resistors R effect both input and output CM responses.
All these variables only influence the CM responses without
any effect on the DMfiltering responses. Fig. 9 illustrates that
the insertion loss |SCC21| and the input and output reflection
coefficient |SCC11| and |SCC22| all decrease with Z4 increases.
In addition, the TZs fTZ2 and fTZ3 gather to the middle fTZ1
with Z4 increases.

In Fig. 10(a), the CM input reflection coefficient |SCC11|
decreases while the resistance R1 decreases and the CM
output reflection coefficient |SCC22| decreases while the
resistance R2 decreases given in Fig. 10(b). The TZs fTZ2 and

FIGURE 9. The ideal simulated CM responses of the A-CMF with different
characteristic impedance of Z4: (a) the input reflection coefficient |SCC11|,
(b) the output reflection coefficient |SCC22|, (c) the insertion loss |SCC21|.
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FIGURE 10. The ideal simulated CM responses of the A-CMF with different resistors of R1, R2, R: (a) the input reflection coefficient |SCC11|

with different R1, (b) the output reflection coefficient |SCC22| with different R2, (c) the insertion loss |SCC21| with different R, (d) the input
and output reflection coefficient |SCC11| and |SCC22| with different R.

TABLE 2. Performance comparison of the A-CMF.

fTZ3 keep away from themiddle fTZ1 with R1 and R2 decrease.
Demonstrated in Fig. 10(c) and Fig. 10(d), |SCC21| slightly

decreases but |SCC11| and |SCC22| increase with the resistor R
increases.

VOLUME 8, 2020 20765



Y. Guan et al.: Bidirectional A-CMF Based on Interdigitated Microstrip Coupled Lines for 5G ‘‘Green’’ Communications

FIGURE 11. The photograph of the fabricated A-CMF. The differential
input and differential output ports are terminated with 50-� SMA
connectors and the via holes are used for the ground connection. The
resistors R1, R2, and R are selected as 20 �, 22 �, and 100 �.

FIGURE 12. The circuit dimensions of the proposed A-CMF.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS
In this paper, a bidirectional A-CMF operating at 3.5 GHz
for 5G ‘‘green’’ communications is implemented. The design
steps are summarized as follows:
1. Determine the operating frequency point f0 as 3.5 GHz.
2. Determine the impedance parameters of Ze, Zo, Z1,

Z2, and Z6 according to the expected DM filtering
responses.

3. Determine the impedance and resistance parameters of Z3,
Z4, Z5, R, R1, and R2 to acquire expected CM absorption
responses.
Following the above steps, the ideal electrical parame-

ters of the proposed A-CMF are listed in Table 1. Since
the interdigitated coupled lines with enhanced degree of
coupling are used to make up the filter with better return
loss in the wide passband [28]. Thus, for easy manufac-
turing and enhanced coupling, interdigitated coupled lines
are adopted to replace the normal double parallel-coupled
lines.

A. IMPLEMENTATION
To prove the above theory, the proposed A-CMF is simu-
lated and fabricated on the substrate of Rogers 4350B with
the relative dielectric constant of 3.66, the loss tangent of
0.0037, and the thickness of 0.508 mm. By properly design-
ing, the structure parameters and the size of the proposed filter
are optimized using Advanced Design System (ADS). The

FIGURE 13. The EM simulated and measured results of the proposed
A-CMF: (a) the EM simulated DM responses |SDD11| and |SDD21|, (b) the
measured DM responses |SDD11| and |SDD21|.

photograph of the fabricated A-CMF is given in Fig. 11. The
corresponding circuit dimensions are displayed in Fig. 12.
Additionally, the via holes are used as grounded holes. The
whole dimension of this manufactured A-CMF is approx-
imately 44 mm × 22 mm. Then, the circuit prototype is
measured using a four-port ZVA8 vector network analyzer.

B. DIFFERENTIAL-MODE FILTERING RESPONSE
The EM simulated results of the DM responses are shown
in Fig. 13(a). The 3-dB bandwidth of |SDD21| is from 1.3 GHz
to 5.4 GHz realizing good selectivity of this filter. The EM
simulated return loss |SDD11| is better than 10 dB from
1.3 GHz to 5.7 GHz. In Fig. 13(b), the measured results show
that the DM signals can pass through this A-CMF almost
without being attenuated from 1.38 GHz to 5.19 GHz. The
bandwidth of |SDD11| lower than −10 dB is from 1.41 GHz
to 5.72 GHz.
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FIGURE 14. The EM simulated and measured results of the proposed
A-CMF: (a) the EM simulated CM responses |SCC11|, |SCC21|, and |SCC22|,
(b) the measured CM responses |SCC11|, |SCC21|, and |SCC22|, (c) the
absorption efficiency 1-|SCC11|2-|SCC21|2.

C. COMMON-MODE NOISE SUPPRESSION
AND ABSORPTION
The EM simulated and measured results of the CM responses
are shown in Fig. 14. The EM simulated CM absorption
bandwidth is from 2.5 GHz to 5.0 GHz under the condi-
tions that the |SCC11|, |SCC22|, and |SCC21| are all lower than
−10 dB. In Fig. 14(b), the measured |SCC21| is below−10 dB
from 0.72 GHz to 8 GHz, which means the CM noises are
suppressed through a broad band. The measured CM return
loss |SCC11| at the input port is below−10 dB from 2.08 GHz
to 5.02 GHz, which means the noises are absorbed by the
resistors instead of being reflected to the previous block.
The measured CM return loss |SCC22| at the output port is
below −10 dB from 2.34 GHz to 5.04 GHz. It is worth
noting that this A-CMF realizes a wide absorption band with
90% absorption efficiency of CM noises from 2.18 GHz to
4.97 GHz plotted in Fig. 14(c).

D. PERFORMANCE COMPARISON WITH
STATES-OF-THE-ART A-CMFS
Finally, the performances of the proposed bidirectional
A-CMF are compared with the related previous A-CMFs,
as summarized in Table 2. It is seen that the proposed circuit
is fabricated in a simple two-layer PCB with bidirectional
absorption, good DM transmission, wideband CM suppres-
sion, and high CM absorption efficiency through a broad
bandwidth. Among all the listed A-CMFs, the adopted fabri-
cation process of a two-layer PCB is simple and cost-efficient
in [22], [26]. But the operating bandwidth and the absorption
efficiency both have great space to improve. Latest, two
circuits are presented with bidirectional absorption and uni-
directional absorption, respectively. The DM bandwidth is
quite broad but the CM absorption efficiency is only 80 %
from 1.8 GHz to 3.0 GHz [26]. These A-CMFs achieve a high
absorption efficiency for unidirectional CM noise absorption
but are fabricated in a complex four-layer PCB [23]–[25].

IV. CONCLUSION
A novel bidirectional A-CMF in a two-layer PCB is proposed
with wide CM stopband, high CM absorption efficiency,
wide CM absorption bandwidth, and good DM transmission
responses. The interdigitated coupled lines are introduced to
replace the normal double parallel-coupled lines for enhanced
coupling and easy manufacture. The function of absorbing
the CM noises from both directions within a broad band can
be widely used for 5G ‘‘green’’ communications and several
differential communication systems with high demand of
electromagnetic compatibility.
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