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Abstract

The MRTD adaptive gridding scheme that is based on the Haar expansion basis is discussed

for arbitrary wavelet resolutions. Guidelines for the optimization of memory and execution time

requirements are presented. A multi-time-stepping procedure enhances further the computational

economies o�ered by a combination of absolute and relative thresholding of the wavelet values.
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I Introduction - Discussion on the Haar expansion basis

Signi�cant attention is being devoted now-a-days to the analysis and design of various types of RF

Packaging structures (e.g. Flip-Chip, Multi-Layered Structures) used in Wireless and Computing

applications. Though The �nite-di�erence-time-domain (FDTD) scheme is one of the most powerful

and versatile techniques used for numerical simulations, it su�ers from serious limitations due to

the substantial computer resources required to model such electromagnetic problems with medium

or large computational volumes. Recently, MRTD (MultiResolution Time Domain Method) [1]{[9]

has shown unparalled properties in comparison to Yee's FDTD. In a MRTD scheme the �elds are

represented by a two-fold expansion in scaling and wavelet functions with respect to time/space.

Scaling functions guarantee a correct modelling of smoothly-varying �elds. In regions characterized

by strong �eld variations or �eld singularities, higher resolution is enhanced by incorporating multiple

resolutions of wavelets in the �eld expansions. The major advantage of the use of Multiresolution

analysis to time domain is the capability to develop time and space adaptive grids. This is due to the

property of the wavelet expansion functions to interact weakly and allow for a spatial sparsity that

may vary with time through a thresholding process. Haar expansion basis functions (Fig.(1)) provide

a convenient tool for the transition from FDTD to MRTD due to their compact support, and to their

similarity with the FDTD pulse basis [6]{[9]. Nevertheless, the enhancement of additional wavelet

terms the number of which is di�erent from cell to cell and for di�erent time-steps requires a careful

consideration of the memory and execution time overheads. In addition, the fact that the stability

1



limit of the time-step decreases as more resolutions are added requires the use of an e�ective multi-

time-stepping algorithm, that will maintain the required accuracy without increasing signi�cantly

the execution time requirements.

II MRTD Scheme with Multiple Wavelet Resolutions

For simplicity, the 1D MRTD scheme for TEM propagation will be discussed. It can be extended to

2D and 3D in a straightforward way. The Electric (Ex) and the Magnetic (Hy) �elds are displaced by

half step in both time- and space-domains (Yee cell formulation) and are expanded in a summation

of scaling (�) and wavelet ( r) functions in space and scaling components in time. For example, Ex

is given by
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r-resolution wavelet functions located inside the i�cell. The conventional notation mEx;i is used for

the voltage component at time t = m�t and z = i�z, where �t and �z are the time-step and the

spatial cell size respectively. The notation for Hy is similar.

Substituting Ex,Hy in the TEM equations and applying Galerkin technique derives the following

equations for Hy
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where: i1 = max[1; INT ((ir � 1) 2�(r
0
�r) ) + 1] and i2 = min[2r; INT (1 + ir 2

�(r0�r))]. Also, the c,d

and e coe�cients can be calculated by the Galerkin technique correlating the respective wavelet and

scaling functions and � is the Kroenecker Delta. For example,
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Through the split of the wavelet coe�cients of resolution r0 > 0 to two groups ([1,..,2r
0
�1] and

[2r
0
�1 + 1,..,2r

0

]) the calculations are performed more e�ciently in terms of the scaling and wavelet

of 0-Resolution contributions. In addition, it is clear that the calculation of these wavelet coe�cients

require a signi�cantly smaller number of terms than 2rmax+1, something that proves that the num-

ber of operations increase signi�cantly slower than O(22(rmax+1)) as the maximum resolution rmax

increases.

II.1 Hard Boundaries

Due to the �nite-domain nature of the expansion basis, the Hard Boundary conditions (Perfect

Electric/Magnetic Conductor) can be easily modeled. For example, if a P.E.C. exists at the z = i�z,

then the scaling Ex coe�cient for the i � cell has to be set to zero for each time-step m since

the position of the conductor coincides with the midpoint of the domain of the scaling function.

Nevertheless, the 0-resolution wavelet for the same cell has the value of zero at its midpoint; thus

its amplitude does not have to be set to zero. To enforce the physical condition that the electric

�eld values on either side of the conductor are indpendent from the �les on the other side, TWO

0-resolution wavelet Ex coe�cients have to be de�ned. The one (on the one side of P.E.C.) will

depend on Hy values on this side only and the other (on the other side of P.E.C.) will depend on

Hy values on that side only. Wavelet coe�cients of higher-resolution with domains tangential to the

position of P.E.C. have to be zeroed out as well. As far as it concerns the equations that update the

coe�cients of the magnetic �eld Hy, only Ex coe�cients on the same side of the P.E.C. have to be

used. The rest of the summation terms have to be replaced with coe�cients derived applying the odd

image theory for the electric �eld. A similar approach can be applied for the modeling of a Perfect

Magnetic Conductor (P.M.C.).

It can be easily observed that for Wavelet Resolutions up to rmax, 2
rmax+1 coe�cients have to be

calculated per cell per �eld component instead of one component in the conventional F.D.T.D. The

derived gain is that the new algorithm has an improved resolution by a factor of 2rmax+1 that can

vary from cell-to-cell depending on the �eld variations and discontinuities. In addition, MRTD can

o�er a signi�cantly better Ex �eld resolution close to P.E.C.'s through the 0-Resolution Wavelet

Double term with a negligible computational overhead per P.E.C. (the second 0-Resolution term).

Conventional F.D.T.D. assumes a constant zero Ex distribution half-cell on either side of the P.E.C.

by zeroing out its amplitude at the P.E.C. cell.
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II.2 Field Reconstruction

The alternating nature of the wavelet functions guarantees the improved time-domain resolution of

the MRTD scheme. Assuming that the Hy scaling and wavelet (0 to rmax resolutions) coe�cients

for a speci�c cell i have been calculated for t = m�t, two values can be de�ned for the domain

[(i � 1: + (ir � 1)2�rmax)�z; (i + ir2
�rmax)�z] of each wavelet coe�cient  

rmax;ir

i
of the maximum

resolution rmax. As a result, a total number of 2
rmax+1 subpoints/cell at the positions: z = (i� 1:+

(ir � 0:5) 2�(rmax+1))�z, for ir = 1; ::; 2rmax+1 can be used for the total �eld value reconstruction:
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where: i0r = INT (2r z) + 1, and

c1 =

(
+1 if ir � 2rmax

�1 if ir > 2rmax

A similar expression can be derived for Ex component. It is obvious, that only 2 + rmax coe�cients

are required for the �eld reconstruction at each subpoint.

II.3 Dynamic Adaptivity - Thresholding

The fact that the wavelet coe�cients take signi�cant values only for a small number of cells that

are close to abrupt discontinuities or contain fast �eld variations allows for the development of a

dynamically adaptive gridding algorithm. One thresholding technique based on absolute and relative

thresholds o�ers very signi�cant economy in memory while maintaining the increased resolution in

space where needed. For each time-step, the values of the scaling coe�cients are �rst calculated for

the whole grid. Then, wavelet coe�cients with resolutions of increasing order are updated. As soon

as all wavelet components of a speci�c resolution of a cell have values below the Absolute Threshold

(that has to do with the numerical accuracy of the algorithm) or below a speci�c fraction (Relative

Threshold) of the respective scaling coe�cient, no higher wavelet resolutions are updated and the

simulation moves to the update of the wavelet coe�cients of the next cell. The same thresholding

procedure is performed for both Ex and Hy components. of the respective medium(s). In this way, the

execution time requirements are optimized, since for areas away from the excitation or discontinuities,

only the scaling coe�cients need to be updated. This is a fundamental di�erence with the conventional

F.D.T.D. algorithms that cannot provide a dynamical time- and space- adaptivity even with grids of

variable cell sizes (static adaptivity).

II.4 Multi-Time-Stepping Implementation

As it has been reported in [9], the maximum time step value that guarantees numerical stability for

maximum wavelet resolution rmax is

�t(rmax) =
�z

2rmax c
; (8)
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where c is the velocity of the light in the simulated medium and �t, �z are the time-step and the

cell size respectively. The dynamically changing gridding that was described in the previous section

allocates di�erent values of maximum wavelet resolution throughout the grid for every time-step, thus

deriving di�erent values of stable time-steps from cell to cell. The easiest way to guarantee stability

would be to identify the maximum used wavelet resolution and use the respective time-step. That

would lead to a huge computational overhead of no practical gain especially for cells that a few or

even no wavelet resolution is needed. On the other side, if di�erent time-steps were to be used, the

calculation of coe�cients updated more often than the neighboring cells (high wavelet resolutions

and smaller time-steps) would require the e�cient interpolation of the values that are updated less

often (larger time-steps). To simplify this procedure, the used time-steps in the grid are de�ned in

powers of 2 starting from the smallest time-step (cells that use the highest wavelet resolution rmax),

�t(rmax). For example, the used time-step for a cell that requires the wavelet calculation up to the

ruse < rmax resolution would get the value �t(ruse) = �t(rmax) 2rmax�ruse .

After identifying the appropriate time-steps for each cell, a second-order backward interpolation is

used to calculate �eld values for intermediate time instants. For example, if the calculation of Ex

coe�cients in one cell is performed with time-step �t = �t(r1) and the calculation of Hy in the neigh-

boring cell is performed with a larger �t = �t(r2) = �t 2r1�r2 , there is the need for the calculation of

Hy in 2r1�r2 subpoints between m�t and (m+1)�t for each time-step m. The interpolation process

can be expressed as:

iint
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�t

�t
)(1 + 0:5((iint � 0:5)

�t

�t
� 0:5))] m+0:5Hy

� [((iint � 0:5)
�t

�t
� 0:5)(1 + (iint � 0:5)

�t

�t
+ 0:5)] m�0:5Hy

+ 0:5[(iint � 0:5)
�t

�t
� 0:5][(iint � 0:5)

�t

�t
+ 0:5] m�1:5Hy ; (9)

for iint = 1; ::; �t
�t
(= 2r1�r2) and can be applied to scaling and wavelet components. The use of the

second-order scheme provides stability for thousands of time-steps. Using linear time interpolation

was found to lead to instabilities and increased re
ection error at the interface of the di�erent time-

steps. Though the interpolation process adds a computational overhead by requiring the storage of

the coe�cients for three time-steps, it improves signi�cantly the requirements in execution time by

performing the simulations at the maximum allowable time-step everywhere in the grid.

II.5 Validation Case

To validate the above approach, the MRTD algorithm was applied to the simulation of the TEM

propagation of a Gaussian excitation at z = 200�z up to 3 GHz inside air dielectric (�r = �r = 1)

for 1,000 time-steps with size �t = 0:95�trmax for each cell's maximum used wavelet resolution

rmax and 400 cells with �z = 2:5cm. Wavelets up to 2-Resolution are enhanced wherever needed.

A relative threshold of 10�4 and an absolute threshold of 10�6 o�er an approximation error smaller

than 0:4%. Fig.(2) which displays the reconstructed Ex �eld distribution at t = 500�z demonstrates

5



the fact that only 24 cells need to calculate the Wavelet Coe�cients. Everywhere else Ex is close

to zero and shows no variation; thus it requires the calculation of only scaling coe�cients. (Memory

Compression=94%). The fact that an interpolation scheme is used for the time-stepping allows for a

time-step aspect ratio of 23 = 8 : 1 in these two areas. In this way, the memory compression gain is

transfered to the execution time as well without a�ecting the simulation accuracy. Fig.(3) which is a

magni�cation of Fig.(2) for the area of increased resolution, proves the ability of Haar-based MRTD

schemes with arbitrary wavelet resolutions to provide locally magni�ed accuracy through the accurate

representation of �eld variations at multiple intracell subpoints. This optimized algorithm has been

expanded in 2D and 3D and simulation results of practical RF Packaging structures (Flip-Chip,

Emebedded Passives) will be presented at the conference. intracell subpoints.

III Conclusions

Various computational aspects concerning the Haar-based MRTD adaptive gridding scheme have been

discussed and guidelines for the optimization of memory and execution time requirements have been

presented. The use of absolute and relative thresholding of the wavelet coe�cients has been combined

with a multi-time-stepping procedure and has led to further economies. In addition, an optimized �eld

reconstruction procedure allows for the quick and reliable demonstration of the increased resolution

that is o�ered by the enhancement of multiple resolution of wavelets with minimum computational

overhead. In this way, the Haar-based MRTD adaptive scheme has been proven to be a very e�cient

and reliable full-wave simulation tool for complex RF structures, such as RF Packaging geometries.
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Figure 1: 0-Order Haar Function Basis.
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