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Abstract 

The FDTD and the Haar-based MRTD algorithms are applied to the full-wave modeling of high-frequency 
structures that require the combination of differential equations with time-constants of different orders. The 
numerical coupling of Maxwell's and mechanical equations for the simulation of a MEMS capacitor and of 
Maxwell's and solid-state equations for a pn diode is discussed in detail.   

 
I. Introduction 
 

State-of-the-art wireless and high-speed computing applications require the effective modeling of complex 
structures that involve mechanical motion, wave propagation and solid-state effects. Due to computational 
constraints, most commercial simulators utilize various approximations in order to provide fast and relatively 
accurate results. The drawback of these approaches is that transient phenomena and nonlinearities are not modeled 
effectively, leading to the degradation of system-level performance. Alternatively, full-wave techniques provide 
higher accuracy but suffer from excessive execution time requirements, thus making their efficient numerical 
implementation very critical. The Finite-Difference Time-Domain technique (FDTD) [1] is one of the most popular 
and versatile  time-domain tools and has been applied to the discretization of Maxwell's equations and of solid-state 
equations. Lately the MultiResolution Time-Domain technique [2] has provided a mathematically correct way to 
implement time and space-adaptive gridding, as well as to significantly decrease execution-time and memory 
requirements. For these reasons, FDTD and MRTD are presented in this paper for the simultaneous modeling of 
Maxwell's, mechanical and solid-state equations in high-frequency structures.  
 
II. MEMS Structures - Coupling of Maxwell's and Mechanical Equations 
 
II.1 Requirements for MEMS Numerical Modeling 
 

Interest in MEMS technology is growing in the RF field because of the lower loss characteristics of 
MEMS devices.  These loss characteristics translate into higher Q of passive devices, a critical improvement 
because the Q of embedded passives is a constraining factor for their implementation in many RF technologies.  
Great strides are being made in the fabrication of MEMS devices, and accurate models of these devices are needed.  
The numerical simulation of these devices is a difficult proposition for a number of reasons.  The first is the need to 
integrate both mechanical and electromagnetic equations.  Most EM simulators are unable to compensate for the 
changing boundary conditions introduced by the motion of the simulated structure.  A second difficulty is the 



 

 

complexity of modeling their intricate structure.  The smallest features of the devices can be several orders of 
magnitude smaller than the bulk feature size, leading to numerical inaccuracies or very large computational grids.  
Thus, a simulator for modeling MEMS devices needs to be able to handle moving boundary conditions, the 
interaction between electrostatic forces and mechanical motion, and difficult to model complex geometries.  In the 
following, a simulator for modeling MEMS parallel plate variable capacitors is discussed. 
 
II.2 MEMS Capacitor 
 
II.2.1. Modeling of Motion  
 

On-chip capacitors are valuable matching and tuning components in most RF circuits. MEMS capacitors 
have demonstrated very low loss and significantly higher Q in comparison to conventional ones, without increasing 
space requirements. Modeling of this type of structure is challenging since it has to incorporate the motion of plates 
under the combined effect of a DC bias and an RF excitation.  The model of the capacitor is simplified in order to 
create a model that will handle many of the features of the MEMS capacitor, while not being overly complex.  
MEMS capacitors can be fabricated using several different methods, all of which will be constrained and excited in 
different ways.  The capacitor presented herein is a parallel plate capacitor that exhibits one-dimensional motion 
[3]. 

The capacitor to be modeled can be seen in Figure 1.  It is comprised of two plates, the bottom fixed, the 
top restrained by a spring and damper.  The spring represents the force from the support of the top plate, while the 
damper represents the resistance of the air.  With no applied bias the weight and spring force on the top plate reach 
equilibrium (the damper only has an effect when the plate is in motion).  When a bias is applied, the electrostatic 
force on the top plate is represented by 
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In this equation, A is the area of the plate, V is the voltage between the plates, h is the initial separation of 
the plates, and x is the displacement of the top plate from its initial position.  This equation neglects fringing fields 
around the capacitor, and is accurate when the plate size is large compared to the separation.  In addition, it is noted 
that while the voltage is constant, the force changes based on the position of the top plate.  In an RF circuit, V 
varies due to the propagating RF field.  When coupled with an electromagnetic simulator, V will vary with time. 

The equation of motion of the top plate is the standard 2nd order ordinary differential equation for spring 
mass systems with (1) as a forcing function.  The equation [4] is  
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The coefficient b is the damping coefficient, k is the spring coefficient, and m is the mass of the plate.  In order for 
the capacitor to operate as desired it must have damped oscillatory motion. 

The purpose of this investigation is to combine the mechanical motion of the parallel plate capacitor with 
a time domain electromagnetic simulator.  As such, it would be useful to have a time domain simulation of the 
capacitor’s motion.  A finite difference discretization of the above model is now presented. In order to create a 
model with second order accuracy, central differences are employed.   
 

Using the standard notation 
nutnu =∆ )(  

(2) can be written as:  
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Solving (4) for 1+nx  gives 
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When implemented, it is assumed that x is equal to zero for all time prior to t=0. This equation could be used by 
itself to determine the motion of the parallel plate under a fixed bias voltage V.  However, it should be noted that V 
could be varied at any time, and the equation would be able to react to the change.  This is very important when 
combining the equation with an electromagnetic simulator. 
 
II.2.2. Combination with a Time-Domain Electromagnetic Simulator (FDTD, MRTD) 
 

In order to efficiently simulate the motion of the MEMS capacitor under an RF excitation, the above 
model has to  be integrated into an electromagnetic simulator.  Two types of full wave time-domain simulators will 
be discussed, the Finite Difference Time Domain (FDTD) and MultiResolution Time Domain (MRTD) techniques.  
There are several similarities between these two modeling methods, and some important differences that affect the 
implementation. 

In either type of simulator the plates are represented as metals, the bottom one fixed.  The position of the 
top plate, however, changes with time.  Because both simulators are time domain, a change in the boundary 
conditions, such as would be caused by a moving metal, is not necessarily a problem.  Indeed, because the 
boundary conditions are enforced explicitly at every time step, a moving plate simply causes the boundary 
conditions to be enforced at different space points for each time step.  In this manner, a time varying metal plate is 
easy to incorporate into an FDTD or MRTD model.  In addition, the voltage between the plates caused by the 
interaction of the capacitor with an applied RF field can readily be calculated from the EM simulator.  Thus the 
bias voltage and voltage due to the applied field can be combined to correctly calculate the forcing function.  There 
are, however, several characteristics of the capacitor geometry that make FDTD modeling difficult. 

As stated previously, the separation between the plates is very small compared to their width.  In order to 
accurately simulate the capacitor it is important to have several cells between the plates.  This creates a very small 
cell side length compared to the plate width and the dimensions of any feeding structure.  While all three sides of 
the cell are not required to be the same length, a large aspect ratio between cell side lengths causes numerical 
inaccuracies.  In order to maintain a reasonable ratio between the cell side lengths, the cells used in the simulation 
must be made very small compared to the computational space.  However, the large number of grid points this 
causes in the simulation are computationally prohibitive.  This discretization problem is linked to the dominant 
difficulty of MEMS modeling, coupling the position results provided by a mechanical simulation to a space-
dependent electromagnetic simulation. 

The equation of motion (5) is an ordinary differential equation.  As such, it is discretized only in time, not 
space and time.  The spatial variable can take on any value.  This creates a problem in its integration into the 
electromagnetic equations, which are discretized in both space and time (as in FDTD and MRTD). In order to 
simulate the moving metal plate in a fixed spatial grid, the plate must take on one of a discrete number of spatial 
points.  There are at least two ways to handle this difficulty in FDTD.  The first method is to find the spatial 
position of the plate from the motion equation, and apply the plate boundary conditions at the closest grid points.  
When the motion equation is next updated, the exact computed spatial value would be used for the update.  Thus, 
the electromagnetic simulator would use the averaged values while the motion simulator would not.  This would 
introduce error in several ways. 

The first error caused by this method is that the spatial position of the capacitor plate is not exact.  The 
equation for the capacitance of a parallel plate capacitor is 
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If d is not represented by a large number of cell widths, the capacitance using the discretized grid points may be 
unacceptably different from the exact capacitance.  These errors would compound during the execution of the 
problem. 

Another option for simulating the capacitor would be to modify the FDTD grid at each time step.  The 
new grid would have a grid level at the exact height of the top plate.  The inherent problem with this method is how 
to determine the field values at the new grid points.  Obviously, some type of interpolation would have to be used.  
The error introduced by this changing grid would be difficult to determine.  However, these problems can be 
alleviated using the adaptive grid provided by MRTD. 

MRTD uses a wavelet field discretization.  This allows cells to be significantly larger than in FDTD.  The 
resolution of cells that contain fine geometry or high field variation can be increased by locally adding wavelets. 
These wavelets, which can be both time and space localized, are equivalent to an adaptive grid, which leads to 
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reduced execution times (areas of small field variation are represented by large cell sizes) and improved memory 
efficiency. Thus, the MRTD technique can be used with the MEMS motion simulator to resolve the position of the 
top capacitor plate to any desired level of accuracy. As a rule of thumb, the position of the PEC is updated every 
100-500 MRTD/FDTD time-steps and is modeled by zeroing out the appropriate scaling and wavelet coefficients. 
The maximum wavelet resolution can be determined by the local positioning error of the PEC on the MRTD cell. 
 
II.2.3. Test Capacitor Simulation 
 

In order to test the ability of an FDTD simulator to adequately determine the capacitance of MEMS 
capacitor, a static MEMS capacitor was modeled.  The capacitor used had an area of 450 µm2, a plate separation of 
1 µm, and was fed with a coplanar waveguide over a ground plane.  The capacitor was treated as a one port 
structure, and Γ of the structure was determined.  From Γ, the impedance and ultimately the capacitance were 
determined.  The predicted capacitance, using (6), is 1.8 pF.  Figure 2 shows a plot of capacitance vs. frequency.  
As can be seen, the capacitance rises slightly with frequency, and is lower than the predicted value.  The change in 
capacitance with frequency, as well as the lower overall value, is due to parasitics from the feeding structure and 
the radiation from the capacitor due to fringing fields at the edges.  The increasing trend agrees with previously 
published results [3]. 
 
III. Solid-state Structures – Coupling of Maxwell’s and Transport Equations 
 
III.1 Transport Equations – Time-step Disparity 
 

The accurate prediction of the performance of high frequency circuits requires the development of a global 
simulator of Maxwell’s and Solid-state equations [5-8]. Most of these approaches involve the simultaneous 
solution of the Maxwell’s equations and of the classic Boltzmann transport equation model that can be written as 
follows in terms of the majority carrier density n (7), velocity vd (8), energy w (9), and electric potential ϕ (10): 
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Initial conditions for the solid-state simulation are provided by the solution of the Poisson equation. Coupling the 
Maxwell’s Equations system to the Solid-state system is accomplished by calculating the voltage applied to the 
semiconductor and the current injected into the model. The disparity between the time steps required for stable 
solutions to each independent problem gives numerical difficulties at the interfaces since the time step of the 
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electromagnetic model is significantly larger than that of the semiconductor model. Simulations performed with a 
global time step set equal to the smallest of the two values would require unreasonable execution times.  However, 
choosing independent time steps for each set of equations and updating the explicit form of the semiconductor 
model every FDTD or MRTD time step produces non-physical results, due to the fact that it does not accurately 
describe the much faster solid-state device response. Dividing the large electromagnetic time step into many 
smaller time steps appropriate for the semiconductor model and interpolating could accomplish a numerically 
correct excitation (Figure 3). 
  
III.2 Discretization Issues 
 

Selecting the discretization method for the semiconductor model is challenging. Various approaches of 
gradually increasing complexity are implemented until stability is satisfactory. Standard notation is presented in 
(11). 
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The first approach used for discretizing all the equations is a central difference in space and a forward 

Euler difference in time (12). This scheme is simple to implement, but suffers from instability.  

 
Improving the stability required determining which of the three basic balance equations contributes more 
significantly to the numerical error leads to approaches that improve the stability. It can be observed that the carrier 
concentration equation only has convection terms that significantly contribute to the error. The carrier 
concentration equation has only convection terms, which significantly contributes to the instability.  While the 
forward time and central space scheme is satisfactory for the momentum and energy equations a new discretization 
method must be found for the carrier equation that will satisfactorily handle the convection nature of the carrier 
equation. The upwind scheme is commonly used to handle equations with large discontinuities. For this case the 

asymmetric nature of the upwind scheme (13) causes unacceptable dispersion in the solution.   
The above simple methods have been explored and rejected for the carrier balance equation. A complex 

method that is commonly used for convection equations is the Lax-Wendroff scheme (14). 

 
The Lax-Wendroff scheme provides O((∆t)2) and O((∆x)2) error in time and space. It makes use of a weighted 
second derivative that introduces diffusion effects into the solution providing additional stability. The complexity 
of the method increases the computational requirements to find a solution to the balanced equation model (7)-(10).  
 

This model can benefit from MRTD by including wavelets (Figure 4) to the equations that feature fast 
field/carrier variations or abrupt discontinuities.  The carrier balance equation is the natural choice for the addition 
of wavelets.  The Lax-Wendroff scheme had to be used for smoothing the discontinuities in order to achieve stable 
simulation. Multiresolution techniques can improve the local numerical accuracy by using adaptively more wavelet 
resolutions where required. Because of this fact, it may be possible to use the simple method of central differences 
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in space and forward differences in time to accurate model the convection-dominated carrier balance equation 
without having to use a computationally intensive differencing scheme.  
  
IV. Conclusion 
 

It has been demonstrated that a method for modeling MEMS using existing FDTD techniques, as well as 
the newer MRTD technique is feasible.  The demonstrated technique combines an ODE that describes the motion 
of the device, as well as time domain simulation of electromagnetic fields.  The time domain motion simulation 
combines well with the time domain electromagnetic simulators.  The differences between the simulators are the 
time steps and discretization.  It has been shown that the MRTD technique can be used to compensate for the lack 
of a discrete space grid in the motion simulation. 
 

Coupling the Solid-state and Maxwell ‘s equations globally in a single simulator is essential for simulating 
and designing high-frequency microstructures that include devices such as mixers, LNA’s, PA’s or other active 
devices. Simulating semiconductors based on the physical construction of the device can provide insight and 
optimizations for the design of microstructures prior to fabrication.  
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Figure 3: Semiconductor Excitation 
Interpolation 
Figure 4: Haar Scaling and Wavelet 
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