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 

Abstract—A RFID-based backscattering sensor system is low-

cost and scalable wireless sensing technology. It takes advantage 

of RF energy harvesting technique, wireless power transfer and 

backscattering principle. It also has uncountable number of 

applications due to its versatility. In this paper, operation principle, 

architecture and machine learning technique for wirelessly 

powered RFID-based backscattering sensor system is presented. 

For the sensor tag-reading and power-delivering algorithm, 

machine learning techniques, such as support vector machine 

(SVM), artificial neural networks (ANN), and naive Bayes 

algorithm, are introduced with experimental verifications. The 

supervised SVM algorithm significantly improved reading accuracy 

of chipless RFID sensor tags due to superior signal classification 

performance of the SVM method. The ANN-based adaptive 

dynamic matching network for magnetic resonant wireless power 

transfer system improved wireless power transfer distance 

efficiently. Position estimation method based on the naive Bayes 

algorithm that is essential for smart wireless power transfer 

platform for wirelessly powered drones is also discussed in this 

paper. 

 
Index Terms—Backscattered radio, far-field energy harvesting, 

machine learning, printed sensor, RFID-based sensor, RFID tag, 

supported vector machine (SVM), artificial neural networks 

(ANN), naive Bayes, wireless power transfer. 

I. INTRODUCTION 

novel low-power, low-cost wireless sensor system for 

large scale Internet of Things (IoT) is an essential 

technology for the hyper-connected society [1]. Recent 

advances in 5G communications have expedited this evolution 

[2,3]. Smart wireless sensor networks or massive IoT embedded 

systems, such as smart factories/hospitals or self-driving cars, 

transmit and process huge amount of collected data in few 

milliseconds thanks to the ultra-fast communication speed (up 

to 20 Gbps) and ultra-reliable low latency (URLL) of the 5G 

communication networks. In this point of view, the energy 

harvesting or wireless power transfer technology enabled 

RFID-based backscattering sensor system has many advantages 

for the self-sustainable extremely low-power wireless sensor 

applications. It has relatively simple system architecture, low-
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cost, long life time, broad sensing capability, and inherited 

passive (‘zero’ power) operation [4,5]. It is also relatively 

convenient to integrate the RFID-based wireless sensor systems 

into other pre-built wireless sensor/communication networks. 

Remarkable advances of artificial intelligence (AI), especially 

for the machine learning techniques, has brought 

groundbreaking innovations in RFID-based self-sustainable 

sensor systems [6]. 

There are numerous reported research efforts on AI (machine 

learning) and their various applications [7-9]. The machine 

learning technology has improved many challenging problems 

dramatically, such as pattern recognition and cyber security. 

The machine learning technique is also able to bring 

unprecedented benefits and features to RFID-based ‘zero’ 

power wireless backscattering sensor system. There are three 

types of machine learning approach: supervised, unsupervised 

and reinforced. The unsupervised learning extracts inherent 

data structures from unlabeled data sets without feedback. It is 

able to find hidden structures or features of a given data set. The 

reinforced learning, unlike the supervised and unsupervised 

learning, recognizes the current state and takes action to 

maximize rewards in a series of actions or all decision-making 

processes. The supervised learning trains a machine using direct 

feedback from given labeled data sets and outputs. Outcome 

prediction or data classification are suitable applications for the 

supervised learning. The supervised learning is able to play a 

pivotal role in analyzing backscattered digital/analog signals or 

wireless power transfer system because most of signal 

processing in wirelessly powered RFID-based sensor systems 

is a classifying or a decision-making process.  

This paper presents recent progress of ultra-low power 

wirelessly powered RFID-based backscattering sensor system 

assisted by supervised machine learning algorithms: supported 

vector machine, artificial neural network, and naive Bayes. 

Topology (single-tag or multi-tags) and operation principle of 

RFID-based sensor tag are covered. Machine learning assisted 

smart wireless power transfer algorithms are also included in 

this paper because efficient wireless power transfer algorithm 

is important for the self-sustainable operation of wireless sensor 
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networks. Dynamic matching network based on artificial neural 

network (ANN) and naive Bayes algorithm for adaptive 

wireless power transfer system experimentally demonstrated 

feasibility of machine learning techniques for self-sustainable 

wireless communication and sensor platform. The supervised 

SVM algorithm significantly improved reading accuracy of 

chipless RFID sensor tags due to superior signal classification 

performance of the SVM method. The ANN-based adaptive 

dynamic matching network for magnetic resonant wireless 

power transfer system improved wireless power transfer 

distance efficiently. Position estimation method based on the 

naive Bayes algorithm that is essential for smart wireless power 

transfer platform for wirelessly powered drones is also 

discussed in this paper. 

Rest of paper is organized as follows. In Section II, the 

operation principle of the self-sustainable RFID-based sensor 

system is presented. In Section III, the supervised machine 

learning algorithms for the self-sustainable sensor platform, 

such as wireless power transfer technology enabled RFID-

based sensor, is discussed to develop an AI-assisted self-

sustainable wireless sensor system.  

II. RFID-BASED BACKSCATTERING SENSOR SYSTEM 

Many RFID-based backscattering sensor tags are passive 

tags because of their relatively straightforward operation 

principle [10]. There are two types of RFID-based sensing 

topologies: single-tag or multi-tag sensing. The single-tag 

RFID sensor detects events using only one sensor tag, while the 

multi-tag RFID sensor employs two or more tags to make a 

decision (event detection). A single-tag sensor system is 

relatively simple, small, and low-cost system but a reader 

requires more functionalities, such as calibration and data 

analysis algorithm, than the multi-tag sensor systems. The 

single-tag sensor system collects remote sensing data from each 

sensor tag but the multi-tag sensor system has reference data for 

comparison as shown in Fig. 1.  

The RFID-base sensor system consists of a reader and sensor 

tags. The sensor tag is a RFID tag integrated with a sensing 

component. The sensor tag harvests radiated electromagnetic 

power from the reader, and re-radiates (or backscatters) 

modulated signal to the reader. There are many types of sensing 

components, such as inductive or capacitive sensors, that 

modulate the incident wireless signals [11-14]. Some reported 

research efforts on RFID IC chips already have sensing 

capabilities [12]. Chipless RFID tags which do not have RFID 

ICs reflect (backscattering) incident interrogation signals, and 

the backscattered electromagnetic waves are modulated by 

resonators or sensing components [15,16].  

Role of a reader (or an interrogator) is critical since the 

antenna of the RFID-based sensor tags interact with their 

surrounding environment resulting in unwanted frequency, 

phase, or magnitude (Radar Cross-section, RCS) shifts. The 

reader should process the collected sensor data correctly to 

prevent false alarms or malfunctions. Software defined radios 

(SDRs) are widely used in reader implementations of RFID-

based sensor systems due to their flexible RF front-end (RFFE) 

re-configurability [17-20]. The SDR platform consists of 

reconfigurable, intelligent and software programmable 

hardware elements. Moreover, there are numerus available 

open application programming interfaces (APIs), such as 

Python, C/C++, and GNU radio, for flexible SDR platform 

management. Python for SDR has attracted interests of many 

researchers because the machine learning algorithms are built 

in its library. Therefore, both TRx RF front-end system of SDR 

and down-converted baseband signals for machine learning can 

be processed on the Python platform. 

Requirements of reader antennas for RFID-based sensors and 

conventional RFID systems are very similar, but there are some 

distinctive differences. Conventional RFID reader system uses 

a circularly polarized (CP) high gain antenna for fixed type 

readers since the orientation of the RFID tags is usually 

unknown. CP waves radiated from the reader antenna deliver 

RF power to linearly polarized tags with 3 dB power loss, but 

alleviate tag orientation issues. Broadside or end-fire radiation 

pattern is preferred for the RFID reader antenna to focus the EM 

energy on the tags. However, RFID-based sensor systems 

sometimes utilize polarization diversity of vertical (V-pol) and 

horizontal (H-pol) polarizations. For example, H-pol waves 

carry a Tx signal from a reader, and a modulated backscattered 

waves are V-polarized (Rx). The radiation pattern of the reader 

antenna depends on the applications. Bistatic multi-node sensor 

systems require both of omni-directional and end-fire antennas, 

while monostatic sensor systems require dual polarized end-fire 

antenna or of two linearly polarized high gain antennas [21]. 

Fig. 2 shows a simplified equivalent circuit model and 

operation principle of the RFID-based backscattering sensor 

system. A dipole type RFID tag antenna is modeled as a series 

RLC tank (Ra, La, and Ca), and the resonator type sensor 

component is also shown in Fig. 2(a). The sensing component 

is the load on the RFID tag that modulates the backscattered 

signal when the main sensing component value changes (Rs, Ls, 

and Cs). Capacitive or inductive sensor changes their 

capacitance or inductance value when the sensor detects an 

event. Resistance variation of a sensing component is also able 

to modulate backscattered or re-radiated signals from the sensor 

 
(a) 

 

 
(b) 

 

Fig. 1. Types of RFID-based sensor: (a) single-tag and (b) multi-tag 

systems. 
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tag. Any circuital changes of the sensing component affect the 

frequency response of the RFID tag (Fig. 2(a)). The reader 

analyzes the backscattered signals to detect resonant frequency 

shift, magnitude variation, or phase shift as shown in Fig. 2(b) 

[22-24].  

Performance evaluation of sensor tags is also important for 

developing an optimized RFID-based sensor system. 

Calculated read-range analysis of the RFID-based sensor tags 

shown in Fig. 3 is a simple and convenient way to compare the 

performance of the RFID-based sensor tags [10]. Fig. 3 consists 

of two axes: power transmission coefficient (τ) and tag antenna 

gain. The power transmission coefficient indicates matching 

between the RFID chip and the tag antenna. For example, a 

value of 1.0 means perfect complex conjugate matching 

between the antenna and the RFID IC. R0 is the estimated read- 

range of a perfectly matched RFID tag with 0 dBi linearly 

polarized antenna gain at the operation frequency. R is the read-

range of the sensor tag. It is calculated according to the Friis 

equation, and the minimum power required to activate the 

passive RFID chip. An example of the normalized read-ranges 

of the reported sensor tag and other reported research efforts are 

shown in Fig. 3. The direction of the arrows indicates before 

and after the event occurrence. 

III.  MACHINE LEARNING APPROACHES 

A. Support Vector Machine (SVM) Method 

In this study, the supervised machine learning method is 

chosen to implement the RFID-based sensor tag-reading 

algorithm because of the limited data set that can be collected 

from the sensor tags. As a proof of concept, a simple chipless 

RFID tag is designed and a tag ID reading algorithm is built 

based on the SVM machine learning method [25]. Fig. 4(a) 

 
(a) 

 
(b) 

 

Fig. 2. Operation principle of the RFID-based sensor tag: (a) 

equivalent circuit model of the sensor tag and (b) frequency response 

of a sensor tag. 

 

 
 

Fig. 3. Read-range analysis of RFID-based sensor tags. 

 
(a) 

 

 
(b) 

 

Fig. 4. (a) SVM classification and (b) its application to chipless RFID 

reader. 
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shows a basic principle of the linear SVM [26]. The SVM 

algorithm constructs a set of (𝑁 − 1) dimensional hyperplanes 

in N-dimensional space to classify data points. A training data 

set of n points is written as (𝑥̅1, 𝑦1), ⋯ , (𝑥̅𝑛, 𝑦𝑛)  where 𝑦𝑛 

(𝑦𝑛 ∈ {−1,1})  indicates the class of 𝑥̅𝑛 . The optimal 

hyperplane can be expressed with a normal vector (𝑤̅) as ‘𝑤̅ ∙
𝑥̅ − 𝑏 = 0’ where b determines the offset of the hyperplane. 

The optimal hyperplane is located in the middle of support 

vectors, which have the class value (𝑦𝑛  value) of −1 or 1 as 

shown in Fig. 4(a). In this point of view, the SVM machine 

learning algorithm is able to classify data, such as bit 

information (‘0’ or ‘1’), easily based on a given data set. For 

RFID-based sensor applications, a bit data set should be 

collected, and the reader is trained according to the SVM 

algorithm as shown in Fig. 4(b). The magnitude and phase 

information of each backscattered wave at certain frequency (fn) 

is considered as a data set (𝑥̅𝑛) for SVM training . The full data 

set for machine training can be obtained by frequency sweeping. 

The RFID reader is able to make a decision (detect tag ID or 

sensor data) once a trained model is built.  

As a design example, this paper presents a printed chipless 

RFID tag using stub resonators [25]. A two-bit tag ID was 

implemented using open stub resonators as shown in Fig. 5(a). 

The first and second bits were located at 3.45 GHz and 5.7 GHz, 

respectively. ‘High’ (bit ‘1’) or ‘Low (bit ‘0’) was defined as 

the presence of resonance as shown in Fig. 5(b). In this work, 

18 MHz step was set to frequency step because it is fine enough 

to detect resonance of the proposed chipless RFID tag. The 

frequency spacing between bits is 2 GHz, and design goal is to 

detect resonances at 3.45 GHz and 5.7 GHz. The Tx and Rx 

antennas were placed orthogonally, and connected to a vector 

network analyzer (VNA). 816 sets of measurement data were 

collected in total. |S21| was measured over 9 GHz (collected data 

bandwidth: 1 ~ 10 GHz) frequency span with 501 points per 

each measurement (18 MHz step) as an input data set for the 

SVM machine learning process. The designed chipless two-bit 

RFID tag was read over-the-air (OTA) as shown in Fig. 5(c), 

and received data sets were classified  (read) by a trained SVM 

model. Transmitted (Tx) signals from the reader were vertically 

polarized while the received (Rx) signals were horizontally 

polarized. Random 163 datasets out of total 816 datasets were 

chosen as a training data set. The training process was stopped 

when the accuracy value shown in Table I was saturated. The 

accuracy of the proposed SVM machine was better than other 

training models, such as decision trees, boosted trees, and k-

Nearest Neighbors (k-NN), as shown in Table I. The magnitude 

of the backscattered waves showed the most accurate training 

parameter among the many measurable EM wave parameters. 

In the case of training, Fig. 5(c) shows a calibrated bi-static  

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5. (a) Printed chipless RFID tags, (b) wired measurement of tag 

ID for SVM machine learning data set collection and (c) measurement 

setup for tag reading. 

Table I. Accuracy Comparison: Train Models 

Training Parameters 
Decision 

Trees 

Boosted 

Trees 
*k-NN SVM 

†Mag. 59.6 73.7 67.0 89.6 

Phase 56.0 64.4 52.5 74.0 

Mag. & Phase 60.7 76.7 55.7 86.2 

Real 58.1 68.7 56.1 94.4 

‡Imag. 61.9 75.8 60.7 93.2 

Real & Imag. 56.4 72.2 56.7 94.6 

Mag. & Real 55.2 76.8 62.6 92.5 

Mag. & Imag. 59.0 64.6 60.9 92.3 

Mag. & Real & Imag. 57.4 74.5 59.9 90.0 
*k-NN: k-Nearest Neighbors algorithm 
†Mag.: Magnitude, ‡Imag.: Imaginary 
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wireless measurement setup without a-priori knowledge (tag 

arrangement and clutter-generating elements). The tags used in 

the actual implementation were completely printed without any 

connectors. Exploring performance for high-density bit 

implementation is the subject of future research efforts. 

B. Artificial Neural Networks (ANN) 

The ANN is a set of algorithms that works to recognize basic 

relationships in a series of data inspired by neurons in the 

human brain. The ANN algorithm trains neurons associated 

with each weight factor that decides triggering speed based on 

the activation function. Bias, b, in Fig. 6 is an additional 

parameter in the neural networks, which delays triggering of the 

activation function and adjust the output based on the weighted 

sum of the inputs to the neurons. 

In this study, a novel real-time range-adaptive dynamic 

impedance matching circuit network design for smart wireless 

power transfer (WPT) applications utilizing an ANN-based 

machine learning strategy is discussed [27]. As a proof of 

concept, a single Rx and three stacked Tx coils with a tunable 

matching circuit were designed. A proposed dynamic matching 

circuit consists of N consecutive L-type matching networks as 

shown in Fig. 7. A unit-matching network consists of a series 

inductor, a shunt varactor, and a PIN diode switch. Three unit 

networks are chosen based on ANN algorithm to achieve 

optimized power transfer efficiency at a given distance. Each 

series inductor has fixed inductance value, and its value was 

selected based on the capacitance range of the varactor at 

operation frequency range. This static topology is able to 

achieve acceptable power transfer efficiency values over a wide 

range of Tx-Rx distances. 

For the experiment setup, two aligned helical coils resonating 

at 13.56 MHz are fabricated [28]. The Rx coil and selective 

concentric three Tx coils are proposed to maximize the coil-to-

coil power transfer efficiency with the optimal radius of Tx coil 

as shown in Fig. 8. To confirm the effectiveness of using the 

selective Tx coils, the reflection coefficients (|S11|) of coil-to-

coil (Rx-Tx1, Rx-Tx2, and Rx-Tx3) were firstly simulated as 

shown in Fig. 9, and the extracted S-parameter matrices serve a 

standard dataset for the neural network training. For the ANN 

training, the real and the imaginary parts of the impedance of 

the equivalent load (Zeq = [Req, Xeq]T) were used for an input 

parameter set (x) to approximate function f(x) through the 

feedforward neural network. An output parameter set consists 

of capacitor values for the 3-stage adaptive matching network 

with the selection of optimal Tx coil ([C1, C2, C3, Txn]T). 220 

data sets were generated from the distribution of |S11| values 

using the matching network to match impedances within the 

range of 0 to 20  for Req and -50 to 50 for Xeq. 

The training process using the feedforward neural network 

was implemented to predict the capacitance values and activate 

proper Tx coil. The measurement configuration consists of a 

directional coupler, the RF detector, and a microcontroller 

module with an analog-to-digital (ADC) converter to test the 

performance of the proposed system. The S-parameters of the 

matched state were measured at different coil separation 

distances, and the measured |S21| values were used to calculate 

 
 

Fig. 6. Simplified building block of artificial neural networks (ANN). 

 
 

Fig. 7. Simplified N-stage active matching circuit topology for the 

proposed smart adaptive matching network. 

 

 
(a) 

 

 
(b) 

Fig. 8. (a) Fabricated Rx coil and (b) stacked concentric three Tx 

coils. 
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the power transfer efficiency. The measured efficiency of the 

proposed system is shown in Fig. 10. The proposed approach 

achieved a power transfer efficiency of around 90% over the   

distance range within 10 ~ 25 cm. Table II shows the power 

transfer efficiency values utilizing unsupervised learning (k-

means clustering) and proposed ANN methods. It is clear that 

the proposed ANN algorithm improved power transfer 

efficiency significantly. 

C. Naive Bayes Algorithm 

The importance of wireless energy transfer for moving 

objects, such as automotive vehicles and unmanned aerial 

vehicles (UAVs), is growing rapidly [29]. Three main 

keywords for wireless energy transmission to moving objects 

in this work are low power wide area networks, UAV, and 

wireless power transfer. Fig. 11 shows a novel wireless power 

transfer platform utilizing a machine learning strategy and a 

measurement setup, respectively. A Styrofoam with 9-position 

grid is placed on top of the Tx coil array to characterize the 

movement of the Rx coil mounted on the drone [30]. The  

proposed system consists of Tx coil array on the ground and a 

Rx coil mounted on a drone. An off-the-shelf planar coil is used 

for both Tx and Rx charging coils as shown in Fig. 12. The coils 

resonate at 13.56 MHz with a series connected capacitor.  

For this experiment, the naive Bayes algorithm is chosen due 

to its characteristics. The naive Bayes algorithm is relatively 

 
Fig. 9. Calculated |S11| according to distance between Tx and Rx coils. 

 

 
 

Fig. 10. Power transfer efficiency with and without the selective Tx. 

 
Table II. Wireless Power Transfer Efficiency 

 k-means clustering method ANN 

Stages 1  2  3  4 3 

Efficiency 

(%) 

k-4 78.3 79.6   81.6 82.0 
92 

(Average) 
k-8 78.0 79.5 81.7 82.5 

k-16 77.6 79.5 81.6 82.3 

 

 

 
(a) 

 

 
(b) 

 

Fig. 11. (a) Schematic of the proposed WPT system with a drone and 

(b) its position measurement setup. 

 

   
                        (a)                                                  (b) 

 

Fig. 12. (a) A unit Tx charging coil and (b) a fabricated 2×2 Tx coil 

array prototype.  
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simple to implement and flexible enough to cover different 

types of measurement data. The naive Bayes algorithm 

calculate the various probabilities based on the 144 cases 

measured at different distances and the positions. The Bayes 

theorem provides a way of calculating the posterior probability, 

𝑃(𝐶𝑘|𝑥) , from the prior probability of a class, 𝑃(𝐶𝑘), the 

likelihood which is the probability of predictor given class,  

𝑃(𝑥|𝐶𝑘), and the prior probability of predictor 𝑃(𝑥) as written 

in (1) and (2).  

 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝐶𝑘)𝑃(𝑥|𝐶𝑘)

𝑃(𝑥)
                              (1) 

  

𝑃(𝑥|𝐶𝑘) =  ∏ 𝑃(𝑥𝑖
𝑛
𝑖=1 |𝐶𝑘)                        (2) 

 

𝑃(𝑥|𝐶𝑘) is the conditional probability of seeing the evidence, 𝑥, 

if the hypothesis 𝐶𝑘 is true. The method computes the posterior 

probability of that sample belonging to each class, then 

classifies the test data according to the largest posterior 

probability by the following equation (3).  

 

𝑦 = argmax
𝑘∈{1,2,…,𝑘}

𝑃(𝐶𝑘) ∏ 𝑃(𝑥𝑖
𝑛
𝑖=1 |𝐶𝑘)               (3) 

 

Switching status of four Tx coils, height of a drone, measured 

power transfer efficiency are input parameters while the output 

parameter is a position number. Fig. 13 shows the prediction 

results compared to original measured data at two operation 

distances using the naive Bayes classification method. It is clear 

that the naive Bayes algorithm provides great performance for 

predicting the position of an Rx coil. This preliminary result 

paves a new way to a rich and wide area of research for the 

implementation of machine learning methods for the 

enhancement of wireless technology, such as RFID and WPT 

on UAV applications. 

IV. CONCLUSION 

This paper discussed various application scenarios of ultra-

low power RFID-based backscattering sensor tags and 

machine-learning algorithms for self-sustainable wireless 

sensor platforms. Operation principle of the sensor tags and 

machine learning-based chipless RFID tag ID classification 

technique of the reader were presented in detail. SVM, ANN, 

and naive Bayes machine learning algorithms were 

implemented for RFID tag ID classification technique and 

wireless power transfer applications to improve the reading 

accuracy and communication range of the backscattering 

wireless sensor systems. The presented sensor system is a 

highly scalable technology, which can be extended to various 

research and industries. For example, “smart” business, such as 

smart farm, agriculture, bio-medical, and manufacturing facility 

applications, are future applications of the proposed zero-power 

self-sustainable machine learning assisted wireless sensor 

systems. 
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