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Abstract  —  This paper introduces a novel full wave 

technique for modeling MEMS tunable capacitors that is 
based on the coupling of physical motion of the MEMS device 
with Maxwell’s equations through the modification of the 
MRTD/FDTD techniques.  The difficulties of modeling 
MEMS devices are discussed, and ways to compensate for 
several of these are presented.  The proposed approach is 
validated through comparison of simulation results to 
measurement for an interdigitated capacitor. 

I. INTRODUCTION 

MEMS technology is quickly maturing and is 
considered to be very promising for use in RF devices.  
The lower loss characteristics, and thus higher Q factor, of 
MEMS devices make them very desirable for use as on-
chip passives [1],[2].  MEMS passives have better 
performance because of their moving mechanical parts, 
although this makes them difficult to model.  Existing full 
wave simulators model static devices, not moving ones, 
and have difficulties with small features and large aspect 
ratios.  This paper presents a simulator, based on the 
MultiResolution Time-Domain (MRTD) [3] and Finite 
Difference Time-Domain (FDTD) [4] methods, that 
models electrostatically actuated interdigitated MEMS 
variable capacitors. 

The FDTD and MRTD modeling methods are both full 
wave time domain techniques.  In order to combine these 
methods with a motion simulation, a way must be found to 
couple the related quantities of the motion and 
electromagnetic equations, namely the position of the 
plates and the fields between them.  The plates represent 
changing boundary conditions in the electromagnetic 
simulation.  Both the plate position and electromagnetic 
field can be modeled in time, which allows the 
combination of a MEMS motion simulation with MRTD 
or FDTD. 

II. MEMS CAPACITOR MODELING 

Creating a model of MEMS capacitors consists of two 
parts.  The first is to find a motion model for the device 

and the second is to combine this model with an 
electromagnetic simulator (MRTD and FDTD).  There are 
several similarities between the implementations using the 
two methods, however there are some critical differences 
that make MRTD preferred choice for modeling MEMS 
devices. 

A. Motion Modeling 

A micrograph of the device being modeled is presented 
in Fig. 1.  It can be considered a planar device for 
modeling purposes.  The applied DC voltage causes an 
attractive force between the fingers.  The fingers are on 
compliant flexures, and thus move closer together.  As the 
spacing changes, the capacitance also changes.  During 
operation, the RF field will propagate through the device, 
changing the voltage between the fingers and altering their 
separation.  A model of the device will have to compensate 
for this effect. 

 

 
Fig. 1. MEMS Variable Capacitor 

 
The modeling of the force between the fingers of the 

device in Fig. 1 can be a difficult electrostatic problem.  
However, the simplified model in Fig. 2 can be used as a 
first order approximation.  Figure 2 is a schematic for a 
parallel plate capacitor.  The bottom plate is fixed and the 
spring and damper hold the top plate in place.  The applied 
voltage causes an electrostatic attraction between the 
plates.  This force causes the top plate to experience 



 

 

damped oscillatory motion.  This motion can be 
represented mathematically. 
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Fig. 2. Diagram of the simplified version of the MEMS 
parallel plate capacitor 
 

The electrostatic force between the plates is: 
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A is the area of the plates, V is the applied bias voltage, x 
is the displacement of the plate using the initial (V=0) 
position as zero, and h is the initial separation between the 
plates.  The above can be used as the forcing function in 
the standard second order differential equation for spring 
mass systems [5]: 
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The coefficients in this equation represent the spring 
constant, k, the dampening coefficient, b, and the mass of 
the plate, m.  Of course, the actual device does not have 
springs and dampers.  The spring represents the elasticity 
of the flexure and the damper represents air resistance as 
well as nonlinearities in the elasticity of the flexure. 

Equation (2) is an ordinary differential equation, and can 
be discretized using central differences.  Using the 
standard notation: 
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This equation can be used to determine the position of 
the plates due to an applied bias.  It is assumed that the 
position is zero before the simulation begins.  The applied 
voltage, V, can be constant (DC bias) or can vary with 
time (RF excitation).  This facilitates the coupling with 
EM simulations. 

B. Combination with Electromagnetic Models 

In RF applications it is important to know the S-
parameters of a device over a large range of frequencies.  
From these parameters other values can be determined, 
such as the capacitance or inductance of a device.  In order 
to determine S-parameters over a large band, a full wave 
simulator is needed.  FDTD and MRTD are excellent for 
this purpose.  The time domain results provided by these 
methods can be converted to the frequency domain 
through a Fourier transform. 

In a time domain simulation the metals represent 
boundary conditions.  For perfect electrical conductors, 
electric field values tangential to the surface of the metal 
are set to zero.  There is no requirement that these 
conditions are enforced at the same point for all time steps.  
In this manner, if the motion of a metal plate is known, it 
can be easily integrated into a simulation.  The boundary 
conditions are simply enforced at each point on the metal 
at any given time step. 

The position of the metal at any time step is given by 
(4).  It is very similar in appearance to the expressions 
used in the FDTD technique.  Using this expression, the 
position that the boundary conditions must be applied in 
the FDTD or MRTD simulation can be found.  However, 
there are several issues that must be addressed with this 
implementation. 

The first issue is that of representing the position of the 
plate in the FDTD or MRTD grid.  The position of the 
plate is exact, not discretized.  There are no points that can 
be set to be the same as in the electromagnetic grid.  This 
creates a difficulty in the parallel plate case. 

In FDTD there are two ways to address this issue.  The 
first is to use a very fine grid in the area of the top 
capacitor plate.  The position can be found exactly, and the 
boundary conditions can be applied at the nearest grid 
points to the metal.  For the purpose of updating the 
position of the metal, however, the exact position value is 
used.  This introduces inaccuracies that may be 
unacceptable. 

The capacitance of a parallel plate capacitor can be 
expressed as: 

 
d
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As before, A is the area of the plates and d is the distance 
between them.  From this expression, it is clear that 
capacitance is inversely proportional to the separation of 
the plates.  In order for the effect of the capacitor to 
remain accurate a small discretization must be used.  This 
introduces another restraint. 



 

 

In order to keep an FDTD simulation accurate, the 
aspect ratio between the cell side lengths must not be very 
large.  If the cell side length in the direction normal to the 
capacitor plate is small, the other cell side lengths must 
also be made small.  In a parallel plate capacitor the aspect 
ratio between the plate width and separation can easily be 
1000.  The problem will quickly become computationally 
prohibitive. 

Another solution of this problem is to move the grid 
points to the exact position of the plates during the 
simulation.  In this manner, the spacing between the plates 
will be exact.  However, this introduces error in 
representing the field at the new grid points.  Interpolation 
must be used to determine the new field values, and the 
error introduced is not favorable. 

In MRTD this is not as difficult.  Because of the built in 
adaptive gridding of the method, it is ideal for simulating 
moving parts.  Areas of high field variation are accurately 
represented by adding wavelets.  Resolution in the area of 
the capacitor plates can be increased until the position of 
the plate is resolved to a desired threshold.  This allows 
the accurate modeling of multiple conductors arbitrarily 
positioned in a cell [6].  It also has the added benefit of 
modeling the complex field structure at the edge of the 
capacitor very well.  In this manner the capacitor can be 
modeled accurately. 

Fig. 3 is a diagram illustrating the variable gridding of 
MRTD.  It is a diagram of an interdigitated capacitor.  The 
grid represented is for the time shown in Fig. 4, a field plot 
at a specific time step in an FDTD simulation.  The white 
sections represent the highest intensity fields, the black are 
the lowest.  The simulation method and more results are 
presented in the next section.  The magnified sections in 
Fig. 3 show the gridding in each portion of the structure. 

 

 
Fig. 3. Interdigitated capacitor used in simulations with 
magnified sections to demonstrate variable grid 

 
In the center, the field variation is not very large.  This 

is because, at this point in the simulation, most of the RF 
pulse is in the second set of fingers.  Therefore, the 
discretization in this area is very coarse.  In the second row 
of capacitor plates the field is varying quickly.  The 

resolution in this area is much higher.  The fine grid in this 
area is realized by adding wavelets to the field 
discretization. 

 

 
Fig. 4. Field plot with structure overlay, time step 1000  
(1.527 x 10-10 seconds) 

 
The interdigitated capacitor can also be modeled in 

FDTD.  A modified discretization of Faraday’s Law based 
on a contour path model provides a computationally 
efficient multi-finger model [4].  This method is based on 
approximating the amount of the cell boundary that is 
metallized, as well as the total metallized area of the cell.  
While this approach is not as accurate as MRTD, it is 
easier to implement. 

The final problem in combining the simulations is the 
issue of the time step.  The time step used in the 
mechanical simulation is significantly larger than that used 
in the electromagnetic simulation.  Updating the position 
of the metal at each time step of the electromagnetic 
simulation would be wasteful.  Also, the movement of the 
plate in this time would be negligible.  Instead, the 
capacitor position will be updated every several hundred 
electromagnetic time steps. 

III. RESULTS 

In order to test the simulation method suggested in this 
paper an interdigitated capacitor was modeled.  The results 
presented here were generated using an FDTD simulator.  
In order to represent the complex geometry of the 
capacitor, the simulator utilized a static variable grid and 
the partial metallization approximation discussed above. 

The schematic of the capacitor modeled is presented in 
Fig. 3.  The capacitor consists of 10 sets of fingers 
arranged in two rows.  When a bias is applied the fingers 
move closer together.  The fingers and feeding structure 
have the same dimensions as the capacitor shown in Fig. 1.  
Fewer fingers were used in the simulation in order to 
reduce computation time.  The results for the lower 
number of fingers were transformed in order to represent 
the complete capacitor. 

In order to represent the structure, a variable grid was 
used in the direction transverse to signal propagation.  In 
the area of the fingers, the grid alternated between 80 µm 
and 55.2 µm widths.  Outside of the finger area, the grid 



 

 

spacing was 135.2 µm.  The grid spacing in the other two 
directions was fixed at 186 µm.  The variable grid 
approximation was applied in the area of the fingers.  A 
PML was used on all sides.  In the substrate below the 
capacitor, the PML represents an infinitely thick dielectric 
slab.  The PML at the exit of the capacitor represents an 
infinitely long transmission line. 

A Gaussian derivative pulse was introduced in the feed.  
The voltage between the signal and ground of the feed line 
was recorded.  A field plot at time step 1000 is presented 
in Fig. 4.  Once the input voltage was converted to the 
frequency domain, S11 was determined by the use of a 
simulation of a thru line with the same dimensions, on the 
same grid.  The infinitely long transmission line on port 2 
of the device acts as a resistor in series with the capacitor 
terminating the input line.  The value of the resistor, 
70.8Ω, is the characteristic impedance of the line. 

The load impedance was determined and capacitance 
value extracted from S11.  A similar structure, consisting of 
only 3 sets of fingers per row was also simulated.  By 
comparing the results of the two simulations, the 
capacitance of the full capacitor was determined. 

A preliminary MRTD simulation was also performed 
using three wavelet resolutions.  In the MRTD simulation, 
the number of cells was reduced by a factor of four by 
three by six.  The absolute threshold used was 10-4, the 
relative threshold used was 10-3.  The results were similar 
to those from the FDTD simulation. 

The results for capacitance from the FDTD simulation 
are presented in Fig. 5.  The simulated values are close to 
the measured value for the capacitor.  A comparison is 
presented in Table 1.  The measured values range from 1.4 
to 1.6 pF in the 300 MHz to 1 GHz range, increasing with 
frequency.  Experimental values for a given frequency 
have a tolerance of approximately 15%.  The variation 
comes from manufacturing tolerances as well as parasitic 
capacitance from the feeding pads.  It is observed that 
capacitance increases with frequency.  The increasing 
trend matches previously reported results [5]. 

IV. CONCLUSION 

A method for modeling MEMS capacitors has been 
presented.  Results from the simulation are similar to 
measured values from actual devices.  The model 
presented herein uses the MRTD/FDTD techniques to 
produce results with a very high order of accuracy.  This is 
very important for effective modeling of devices with 
complex geometries, such as MEMS capacitors. 

Future directions for this work include accounting for 
metal loss in the simulation and adopting motion models 
with more degrees of freedom.  When loss is accounted 

for, the Q of the device can be found.  In addition, this 
technique could be expanded to model other types of 
MEMS devices. 
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Fig. 5. Simulation Results: Capacitance vs. Frequency 

 
Frequency (MHz) Simulation (pF) Measurement (pF) 

208.105 1.46 1.58 
403.475 1.46 1.62 
500.00 1.47 1.4 

 
Table 1. Comparison of simulated and measured capacitance 
values 
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