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Abstract — The Design of Experiment approach (DoE) and an electromagnetic full–wave solver are combined
in a single algorithm in order to produce parametric model of planar microwave and millimeter wave components.
The DoE is a technique normally used to improve a process or a system and is here applied for conducting an
electromagnetic analysis in which parameter levels, as geometrical dimensions, are made vary and the corresponding
changes on the output are recorded. The results are then statistically processed by the Analysis of Variance (ANOVA)
for determining which parameters or their combination is more significant. The electromagnetic analysis performed
in time–domain by means of a Transmission Line Matrix (TLM) method provides a very broadband characterization.
The given structure is simulated for each of the possible combination obtained from changing each parameter between
two levels while keeping all the others constant. The two values correspond to the limit of a range of variation
opportunely chosen. Once the parameters have been identified multiple linear regression (MLR) approach is applied to
develop the model. This algorithm is here tested to two different test structures, as a microstrip (MS) patch antenna
on teflon substrate and a coplanar waveguide (CPW) bend on silicon substrate. The accuracy analysis complete the
algorithm description by giving an estimation of the model error .

1 Introduction

Microwave and millimeter–wave components fabricated on sophisticated technology upon more and more
demanding requirements of frequency bandwidth and functionality, has urged the need of techniques of
analysis able to define reliable and accurate design rules suitable for the synthesis and the optimization
of novel devices. Models for precise electromagnetic computer aid design (CAD) software are very often
not existing or not accurate enough. Distributed RF circuits are fully characterized by their scattering
matrix which are strictly dependent from the design parameters as geometrical dimensions and material
properties. A first step in the definition of a parametric model therefore, consists in the selection of those
factors which are more significant and in the identification of their effects on the component performances.
Among the existing prior approaches with the aim to derive analytic model of high frequency networks,
there are look–up table, curve fitting techniques, space mapping (SM)[3], artificial neural networks (AAN)
[4], multidimensional adaptive parameter sampling (MAPS)[5]. The concept which distinguishes the present
method is the use of statistical tools as ANOVA, to discriminate which role and in which frequency range
each of these parameter plays [6]. The block diagram for the proposed algorithm is depicted in Fig. 1. A
structure under study depend on a certain number of parameters. Only part of these can vary independently
while the rest depends from the first ones or are defined by prior knowledge and design criteria. A design
of experiment is conducted in order to identify a number of electromagnetic simulations or experiments
that is sufficient to provide objective statistical conclusions can be made. Different design strategies are
available and depending on the number of parameters and the experiment’s properties a full– or fractional–
factorial analysis is possible. These two design strategies consist in analyzing all (full) possible parameter
combinations between two possible values or taking only a portion (fractional) of these respectively[7]. The
full-wave analysis is base on the time–domain TLM method, which offers beside great stability and accuracy,
scattering parameters over a broad frequency band at the cost of a single simulation [2]. The data collected
from the entire set of simulations are consequently processed with the ANOVA algorithm which yields a
hierarchical list of the parameters and their combinations ordered in terms of their weight on the output
performances (scattering parameters). The final model is eventually built by relating these parameters
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Figure 1: Block diagram of the Algorithm

and/or their combination through multilinear regression (MLR) technique. A broad band parametric model
of the high frequency structure under study is therefore given available to further application in synthesis
and optimization problems.

2 Theory

The DoE is a theory with the aim to define how to correctly set up an experiment (be it a measurements, a
simulation or other) in order to achieve objective and valid conclusions. Among the existing DoE strategies
for the multivariable esperiments the most complete is the full–factorial. The advantages of the full–factorial
design is the efficiency and the possibility to detect variable interactions. On the other hand the number
of runs (simulations) required can quickly become very large. For example for 6 variables and a two level
full–factorial design a number of 26 = 64 combinations are required. The possibility to reduce this number is
offered by the fractional–factorial design, in which some combination are neglected because give no further
analysis insight.

2.1 ANOVA Algorithm

ANOVA is a statistical technique able to quantify the significant differences between output levels, resulting
in a hierarchy of parameters ordered for importance. An analysis of variance is brought out by comparing
the variance within an output level against the variance across the whole level population. To apply the
test a random sampling of a variable (simulation output) y with equal variance, independent errors, and a
normal distribution are assumed. Let n be the number of replicates (set of identical observations) within
each of K factor levels (treatment groups), and yij be the jth observation within factor level ith. ANOVA
is ”balanced” by restricting n to be the same for each factor level (each of the input columns is treated as a
separate group, and each group has the same number of elements). A factor F is used to compare the sum
of the squares of the levels with the sum of the squares of the entire data samples and is so defined:

FStatistic =
(SSE)(df2)
(SSR)(df1)

(1)

where the terms:

SSR =
1
n

k∑

i=1

(
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(yij))2 − 1
Kn

(
k∑

i=1
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j=1

(yij))2. (2)

SSE =
k∑

i=1

n∑

j=1

(yij − ȳi)2 = SST − SSR (3)



with:

SST =
k∑

i=1

n∑

j=1

(yij − ¯̄y)2 (4)

are the treatment sum of squared, the error sum of square, and the total sum of squared respectively. Here,
ȳi is the mean of observations within factor level ith, and ¯̄y is the ”group” mean (i.e., mean of means).
The others two quantities, df1 and df2, are called column degree of freedom, calculated as the maximum
element in a group minus one, and the error degree of freedom, given by the length of the input vector
(here the structure response) minus the group’s maximum respectively. The ANOVA F statistic factor can
only assume non–negative values. It is zero if all the sample means are identical and gets larger as they get
farther apart from each other[7][8].

The ANOVA analysis breaks down the generic electromagnetic response S in m frequency ranges in
which the computed statistic factors indicate the dominant parameters and/or their combinations. In each
ith interval a parametric model φ1(θi, f) is build to reconstruct the response as shown in (5). The parameter
vector θi has variable length corresponding to the number of selected parameters in the correspondent
frequency interval. The resulting parametric model (MLR) can be written as follows:

S(f, Θ) =





φ1(θ1, f) f1 ≤ f < f2

φ2(θ2, f) f2 ≤ f < f3

· · ·
φm(θm, f) fm−1 ≤ f < fm

=
m∑

i=1

φi(θi, f) ui (f) (5)

where the function ui(f) is defined as:

ui(f) =
{

1 fi−1 ≤ f < fi

0 elesewhere
(6)

2.2 MLR Model

To determine the relationship between regressor variables x and a response variable y for a designed exper-
iment, the values of x, controlled by the experimenter, and the corresponding value y, experiment output,
are recorded. Many regression problems involve more than one regressor variable. The generalized multiple
linear regression model is given for k regressor variables by:

y = β0 +
k∑

j=1

βixi

︸ ︷︷ ︸
Linear Terms

+
∑ k∑

i<j

βijxixj

︸ ︷︷ ︸
Interactions Terms

+
k∑

j=1

βjjxj
2

︸ ︷︷ ︸
Quadratic Terms

(7)

This model in terms of the observations corrected to their averages (no constant term, β0), may be written
(if only linear terms are included), in matrix notation as:

Y = Xβ + ε (8)

where

Y =




y1

y2

...
yn


 , X =




(x11 − x̄1) (x21 − x̄2) · · · (xk1 − x̄k)
(x12 − x̄1) (x22 − x̄2) · · · (xk2 − x̄k)

...
...

. . .
...

(x1n − x̄1) (x2n − x̄2) · · · (xkn − x̄k)




and

β =




β1

β2

...
βk


 ε =




ε1
ε2
...

εn


 .



The jth column of the data matrix X might represent linear interactions or nonlinear terms, x̄j is the average
of the jth column. In general, Y is an n × 1 vector of responses, X is an n × k matrix of the levels of the
regressor variables, β is a k×1 vector of frequency dependent regression coefficients, and ε is a random error
vector n× 1. The dimension ”k” has to be replaced by a larger number if cross–variable effects get included
in the regression process [9]. The target is to find the vector of least squares estimators β̂ that minimize

L =
n∑

j=1

ε2 = ε′ε = (Y −Xβ)′(Y −Xβ) (9)

The least squares estimators β̂ must satisfy

∂L

∂β
|β̂ = −2X′Y + 2X′Xβ̂ = 0 (10)

Solve for the least squares estimators of β

β̂ = (X′X)−1X′Y (11)

The algorithm just mentioned is applied to fit the parameters vector θi to the scattering parameters (y)
through the calculated set of regression coefficients β̂.

3 Application Examples

The first example for which the above described algorithm has been applied is a misrostrip rectangular
patch antenna on teflon substrate (εr = 2.2) feed by a feeding line of 50Ω. The three chosen parameters
are described in Fig.2 with their correspondent 2–levels range of variability. A full-factorial design has been

x2

x3

x1

Parameter Value Range [min, max] in mm

x1 12.5÷ 23.5
x2 16.0÷ 30.0
x3 2.0÷ 4.0

Figure 2: Patch antenna (top-view) and parameters variation range

applied with an overall amount of 23 = 8 TLM simulations. Then the ANOVA analysis and the model
construction by MLR a test structure has been used to validate the model accuracy by comparing the model
results with those from the TLM (Fig.3). The second example is a coplanar waveguide bend, on silicon
substrate (εr = 11.7) realized in copper (σ = 5.8 107S/m) with compensation by means of airbridges. The
structure is depicted in Fig. 4 together with the 4 parameters and the correspondent 2–levels range. A
full-factorial design has been carried out, with 16 full-wave simulations. The results of the ANOVA analysis
highlights that the most significant parameter is the width of the inner conductor and then the distance
signal–to–ground, while the bridge position and width for the given range seems to give some contribution
only above 55 GHz. The results comparison between model MLR and the correspondent TLM simulation
are depicted in Fig. 5. In this synthesis problem the goal has been to bring the value for the transmission loss
below −2dB at 85GHz obtaining a set of parameters [x1, x2, x3, x4] = [27, 115, 112, 35]. The results in terms
of scattering parameters are -17 dB for the return loss and -2.25 dB for the transmission loss at 85 GHz.

4 Error Analysis

Typically, the estimated coefficient β̂ will follow a normal distribution due to the effect of the Central Limit
Theorem. The distribution of the error is symmetric about its mean, usually around the mid points of
the regression intervals and has a standard deviation σerror, which has a value that practically all of the
distribution (99.73%) lies inside the range µ− 3σerror ≤ x ≤ µ + 3σerror, for a standard normal distribution
with (µ, σ2) = (0, 1). The use of non–linear regression techniques can improve the algorithm accuracy by
reducing the model error.
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Figure 3: Comparison results for a synthesized patch antenna input reflection obtained from the model and
from the TLM simulation

x3

x3

x2

x4

x4

x1

x1

Parameter Range [min, max] in µm Description

x1 0÷ 100 Air Bridge Position

x2 100÷ 200 CPW signal line width

x3 100÷ 150 CPW slot width

x4 30÷ 50 air bridge width

Figure 4: CPW bend (top-view) with the chosen parameters and the correspondent variation range

5 Conclusions

An algorithm based on design of experiment approach and full–wave simulations has been presented. The
ANOVA technique applied to the set of simulation results enables the selection of the most significant
parameters among a total number which can be even very large. The stability and elasticity of the TLM
solver allows the electromagnetic analysis of any structure of high complexity, with the advantage of a broad
band characterization. The final parametric model is carried out with the MLR technique, and can replace
the full–wave model in synthesis problems with an enormous saving of computational time. The presented
algorithm has been applied to two benchmark structures, as a microstrip patch antenna and the other and
a bend on a coplanar waveguide. A full–wave simulation of test structures has eventually been compared
with the model. The algorithm can be extended to any electromagnetic planar structure and constitutes a
base for a general technique of component library generation.
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Figure 5: Comparison results for a CPW bend parametric model and its correspondent full–wave analysis
by TLM in terms of scattering parameters magnitude

References

[1] P.B. Johns, R.L. Beurle, ”Numerical Solution of 2-Dimensional Scattering Problems using a
Transmission-Line Matrix,”Proc. IEE, Vol.118, No. 9, pp. 1203-1208, Sept. 1971.

[2] L.Pierantoni, M.Farina, T.Rozzi, F.Coccetti, W.Dressel, and P.Russer, ”Comparison of the Efficiency
of Electromagnetic Solvers in the Time– and Frequency–Domain for the accurate Modeling of Planar
Circuits and MEMS,”IEEE MTT–S Int. Symp. Dig.,Seattle, USA, June 2002

[3] J.W.Bandler, R.M.Biernacki, S.H.Chen, P.A.Grobelny and R.H.Hemmers,”Space Mapping Technique
for Electromagnetic Optimization,” IEEE Trans. Microwave Theory and Tech.,Vol.42, No. 12, pp. 2536–
2544, Dec. 1994.

[4] F.Wang, V.K.Devabhaktuni and Q.J.Zhang,”A Hierachical Neural Network Approach to the Develop-
ment of Library of Neural Models for Microwave Design,”IEEE MTT–S Int. Symp. Dig.,Baltimora,
USA, June 1998, pp. 1767–1770.

[5] J.De Geest, T.Dhaene, N.Fach‘ and D.De Zutter”Adaptive CAD–Model Building ALgorithm for General
Planar Microwave Structures,” IEEE Trans. Microwave Theory and Tech.,Vol.47, No. 9, pp. 1801-1809,
Sept. 1999.

[6] D.Staiculescu, J.Laskar and M.Tentzeris, ”Design Rule Development for Microwave Flip–Chip Applica-
tions,” IEEE Trans. Microwave Theory and Tech.,Vol.48, No. 9, pp. 1476–1481, Sept. 2000.

[7] Douglas C.Montgomery, ”Design and Analysis of Experiments,” New york – John Wiley , 3rd Edition
1991.

[8] Irving W.Burr, ”Applied Statistical Methods,” New york – Academic press, 1974.

[9] N. Draper and H. smith, ”Applied Regression Analysis,” New york – John Wiley , 3rd Edition 1998.


