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Abstract—The stability and dispersion performance of the
recently developed Battle–Lemarie multiresolution time-domain
schemes is investigated for different stencil sizes. The contribu-
tion of wavelets is enhanced and analytical expressions for the
maximum allowable time step are derived. It is observed that
larger stencils decrease the numerical phase error, making it
significantly lower than finite-difference time domain for low
and medium discretizations. The addition of wavelets further
improves the dispersion performance for discretizations close to
the Nyquist limit, though it decreases the value of the maximum
time step, guaranteeing the stability of the scheme.

I. INTRODUCTION

FINITE-DIFFERENCE time-domain (FDTD) numerical
techniques are widely used today for the analysis of

various microwave geometries and for the modeling of
electromagnetic (EM) wave propagation. Though many of
them are very simple to implement and can be easily
applied to different topologies with remarkable accuracy,
they cause a numerical phase error during the propagation
along the discretized grid. For example, the numerical phase
velocity in the FDTD [1] can be different from the velocity
of light, depending on the cell size as a fraction of the
smallest propagating wavelength and the direction of the grid
propagation. Thus, a nonphysical dispersion is introduced and
affects the accuracy limits of FDTD simulations, especially
of large structures.

In addition, it is well known that the finite-difference
schemes in time and space domains require that the used time
step should take values within an interval that is a function of
the cell size. If the time step takes a value outside the bounds
of this interval, the algorithm will be numerically unstable,
leading to a spurious increase of the field values without limit
as the time increases.

Though the stability and the dispersion analysis for the
conventional Yee’s FDTD algorithm has been thoroughly
investigated [2], only a few results have been presented con-
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cerning multiresolution time-domain (MRTD) schemes based
on cubic spline Battle–Lemarie scaling and wavelet functions
[3]. The functions of this family do not have compact support,
thus the finite approximations of the derivatives are finite
stencil summations instead of finite differences. In this paper,
the effect of the stencil size, as well as of the addition of
wavelets, is investigated and comparison with second-order
and higher order FDTD schemes displays a difference in their
respective behaviors.

II. STABILITY ANALYSIS

For simplicity and without loss of generality, it is assumed
throughout the stability and dispersion analysis that the-
and -fields are expanded only in terms of scaling functions
(S-MRTD) in space domain. Hints for the addition of wavelets
will be presented where needed. Following the procedure of
[3], the MRTD equations for the two-dimensional (2-D)
mode can be written as

Following the stability analysis described in [4], these equa-
tions are decomposed into separate time and space eigenvalue
problems. The finite-difference approximations of the time
derivatives on the left-hand side of the equations can be written
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as an eigenvalue problem

(1)

(2)

(3)

In order to avoid instability during normal time stepping,
the imaginary part of , , must satisfy

(4)

For each time step, the instantaneous value of the electric
and magnetic fields distributed in space across the grid can be
Fourier transformed with respect to the- and -coordinates
to provide a spectrum of sinusoidal modes (plane-wave eigen-
modes of the grid). Assuming an eigenmode of the spectral
domain with and being the - and -components of the
numerical eigenvector, the field components can be written as

Substituting these expressions to (1)–(3) and applying Eu-
ler’s identity, we get

(5)

In (5), is a pure imaginary, which is bounded for any
wave vector

(6)

where is the velocity of the light in the modeled
medium.

Numerical stability is maintained for every spatial mode
only when the range of eigenvalues given by (6) is contained
entirely within the stable range of time-differentiation eigen-
values given by (4). Since both ranges are symmetrical around

zero, it is adequate to set the upper bound of (6) to be smaller
or equal to (4), giving

(7)

For , the above stability criterion gives

- (8)

where

(9)

It is known [2] that

(10)

which for gives

(11)

Equations (8)–(11) show that for the same discretization size,
the upper bounds of the time steps of FDTD and S-MRTD are
comparable and related through the factor . The stability
analysis can be generalized easily to three dimensions. The
new stability criteria can be derived by (8) and (11) by
substituting the term with .

More complicated expressions can be derived for the max-
imum allowable time step for schemes containing scaling
and wavelet functions. For simplicity and without loss of
generality, it is assumed that the stencil size is equal for
all three summations . The upper
bound of the time step for the 2-D MRTD scheme with zero-
resolution wavelets to one (-direction) or two directions (-
and -directions) for is given by

- (12)

with (13), shown at the bottom of this page, and

- (14)

(13)
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Fig. 1. Stability parameters for MRTD.

with (15), shown at the bottom of this page, where the notation

(16)

has been used. Values for the coefficients, are given in
[3].

It can be observed that the upper bound of the time step
depends on the stencil size , , . This dependence is
expressed through the coefficients , , , which
decrease as the stencil size increases. Fig. 1 shows that
practically converges to the value 0.6371 after and

and for .
The expression of can be easily derived by the expressions
of and by zeroing out the effect of , .

III. D ISPERSIONANALYSIS

To calculate the numerical dispersion of the S-MRTD
scheme, plane monochromatic traveling-wave trial solutions
are substituted in the discretized Maxwell’s equations. For
example, the component for the mode has the form

(17)

where and are the - and -components of the numerical
wave vector and is the wave angular frequency. Substituting
the above expressions into (1)–(3), the following numerical
dispersion relation is obtained for the mode of the S-

TABLE I
COEFFICIENTSCi FOR DIFFERENT MRTD SCHEMES

Scheme C1 C2 C3 C4 C5 C6

SS 6=0 0 0 6=0 0 0
W0S 6=0 0 0 6=0 6=0 6=0
SW0 6=0 6=0 6=0 6=0 0 0
W0W0 6=0 6=0 6=0 6=0 6=0 6=0

Fig. 2. Dispersion characteristics of S-MRTD for various stencils
(20 samples=�).

MRTD scheme after algebraic manipulation:

(18)

For square unit cells and wave propagat-
ing at an angle with respect to -axis and

, the above expression is simplified to

(19)

(15)
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Fig. 3. Dispersion characteristics of S-MRTD forna = 8. Phase error
(Ste = 8 versus FDTD).

Fig. 4. Dispersion characteristics of S-MRTD forna = 10. Phase error
(Ste = 10 versus FDTD).

This equation relates the numerical wave vector, wave
frequency, cell size, and time step. Numerical solutions of (19)
for different angles, time-step sizes, and frequencies quantify
the dispersion characteristics.

Defining the Courant number and the number
of cells per wavelength and using the
definition of the wave vector , the dispersion
relationship can be written as

(20)

Fig. 5. Dispersion characteristics of S-MRTD forna = 12. Phase error
(Ste = 12 versus FDTD).

Fig. 6. Dispersion characteristics of S-MRTD forna = 14. Phase error
(Ste = 14 versus FDTD).

where is the ratio of the theoretically given
value to the numerical value of the propagating wavelength
and expresses the phase error introduced by the S-MRTD
algorithm. To satisfy the stability requirements,has to be
smaller than 0.45 for the 2-D simulations.

The above analysis can be extended to cover the expansion
in scaling and zero-resolution wavelet functions in- and -
or both directions.

The general dispersion relationship is

(21)
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Fig. 7. Stencil effect on the dispersion characteristics of S-MRTD (sparse
grid).

Fig. 8. Stencil effect on the dispersion characteristics of S-MRTD (dense
grid).

with

(22)

is defined by

Fig. 9. Wavelets effect on the dispersion characteristics of MRTD for various
stencils.

Fig. 10. Wavelets effect on the dispersion characteristics of MRTD for
na = 8 (coarse grid).

(23)

Equation (21) can be applied to the dispersion analysis of
(only scaling functions), (zero-resolution wavelets

only to -direction), (zero-resolution wavelets only to
-direction) and (zero-resolution wavelets to both-

and -directions) following Table I. In case , it can be
calculated by (23).

The above equation is solved numerically by use of Bisec-
tion–Newton–Raphson hybrid technique for different values
of , , and . Fig. 2 demonstrates the effect
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Fig. 11. Wavelets effect on the dispersion characteristics of MRTD for
na = 8 (denser grid).

Fig. 12. Wavelets effect on the dispersion characteristics of MRTD for
na = 10 (coarse grid).

of different stencils on the numerical phase error for the
S-MRTD scheme and for a discretization of .
Figs. 3–6 show the variation of the numerical phase velocity
as a function of the inverse of the Courant number
for stencil sizes , , , . For each figure,
the following three different discretization sizes are used:

1) 10 cells/wavelength (coarse);
2) 20 cells/wavelength (normal);
3) 40 cells/wavelength (dense).

The results are compared to the respective values of conven-
tional FDTD. It can be observed that the phase error for FDTD
decreases quadratically. The variation of the phase error in
MRTD exhibits some unique features. For any stencil size, the
numerical phase error for MRTD discretization of is
smaller than that of the FDTD discretization of for
all values of and smaller than that of the FDTD discretization
of for . Nevertheless, the MRTD error
does not decrease monotonically [5] as the cell size is getting

Fig. 13. Wavelets effect on the dispersion characteristics of MRTD for
na = 10 (denser grid).

Fig. 14. Wavelets effect on the dispersion characteristics of MRTD for
na = 12 (coarse grid).

smaller. It decreases up to a certain discretization value and
then it starts increasing. This value depends on the stencil
size and takes larger values for larger stencils. For example,
this value is between – for stencil equal to ten,
between – for stencil equal to 12, and very close
to for stencil equal to 14, and can be used as a
criterion to characterize the discretization range that the MRTD
offers significantly better numerical phase performance than
the FDTD.

The phase error caused by the dispersion is cumulative
and represents a limitation of the conventional FDTD Yee
algorithm for the simulation of electrically large structures.
It can be observed that the error of S-MRTD is significantly
lower, allowing the modeling of larger structures. FDTD
is derived be expanding the fields in pulse basis. As is
well known, the Fourier transform of the pulse is a highly
oscillating Si( ). On the contrary, the Fourier transform of the
Battle–Lemarie cubic spline is similar to a low-pass filter. That
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Fig. 15. Wavelets effect on the dispersion characteristics of MRTD for
na = 12 (denser grid).

Fig. 16. Effect of the Courant number on the dispersion characteristics of
W0 �MRTD for na = nb = nc = 10 (coarse grid).

“smooth” spectral characteristic offers a much lower phase
error even for very coarse (close to– cells.

By using a larger stencil , the entire-domain oscillating
nature of the scaling functions is better represented. Thus,
smoother performance for low discretizations (Fig. 7) and
lower phase error for higher discretizations (Fig. 8) is achieved
as increases from 8 to 12. Wavelets contribute to the
improvement of the dispersion characteristics for even coarser
cells (close to – ) as is shown in Figs. 9–15. For
discretizations above cells the effect of the wavelets is
negligible. Figs. 13 and 15 clearly show that the phase error
has a minimum for a specific discretization (17 for
and 25 for ).

Figs. 16–19 show that, for discretizations smaller than
cells , the choice of the Courant number significantly

affects the dispersion performance that starts converging to
the minimum numerical phase error ( for

Fig. 17. Effect of the Courant number on the dispersion characteristics of
W0 �MRTD for na = nb = nc = 10 (denser grid).

Fig. 18. Effect of the Courant number on the dispersion characteristics of
W0 �MRTD for na = nb = nc = 12 (coarse grid).

Fig. 19. Effect of the Courant number on the dispersion characteristics of
W0 �MRTD for na = nb = nc = 12 (denser grid).
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Fig. 20. Effect of the Courant number on the dispersion characteristics of
FDTD (coarse grid).

Fig. 21. Effect of the Courant number on the dispersion characteristics of
FDTD (denser grid).

and for for
close to ten. On the contrary, the FDTD dispersion is almost
independent of the Courant number (see Figs. 20 and 21).

It has been claimed in [6] that the S-MRTD Scheme is
slightly oscillating and its performance is only comparable
with the 14th-order-accuracy Yee’s scheme. Though this is
true for the S-MRTD schemes with stencil size of eight,
the comparison of the dispersion diagrams of Yee’s FDTD
scheme, Yee’s 16th-order (HFD-16) and 22th-order (HFD-
22) and S-MRTD and MRTD using zero-resolution wavelets
in space-domain (Wo-MRTD) schemes with different stencils
leads to interesting results. For validation purposes, the values
of and have been
used and all the dispersion curves are subtracted by the linear
dispersion relation for one-dimensional (1-D) simulations.
Fig. 22 shows that the S-MRTD scheme with stencil 10 has

Fig. 22. Comparison of the dispersion performance of S-MRTD and
Wo-MRTD with different higher order Yee’s schemes.

Fig. 23. Details of Fig. 20.

a comparable performance to the 16th-order Yee’s scheme.
The addition of zero-resolution wavelets for the same stencil
significantly improves the dispersion characteristics of the
MRTD scheme. In this case, the dynamic range ofis
extended by approximately 90% and compares favorably even
to the 22th-order Yee’s scheme. This is expected due to
the multiresolution-analysis principle that, for an arbitrary
resolution , the space created by the wavelets is a subset
of the space, which is orthogonal to that created by
the scaling functions of the same resolution; thus, the new
basis composed by both scaling and wavelet functions spans
a larger (“more complete”) subspace of than the scaling
functions alone. Both S-MRTD and Wo-MRTD schemes have
identical numerical phase errors up to the point that the S-
MRTD scheme starts diverging (Fig. 23). As the stencil size
of the Wo-MRTD scheme is increasing from 6 to 12 (see
Fig. 24 and 25), the oscillatory variation of the phase error
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Fig. 24. Comparison of the oscillations of Wo-MRTD scheme for different
stencil size.

Fig. 25. Details of Fig. 22.

is diminishing to a negligible level generating an almost flat
algorithm similar to the higher order Yee’s ones.

As a conclusion, due to the poor dispersion performance of
the FDTD technique even for ten cells/wavelength a normal-
to-coarse grid is always required to avoid significant pulse
distortions, especially for the higher spatial-frequency compo-
nents. MRTD offers low dispersion even for sparse grids very
close to the Nyquist limit.

IV. CONCLUSION

The stability and dispersion performance of the recently de-
veloped Battle–Lemarie MRTD schemes has been investigated
for different stencil sizes and for zero-resolution wavelets.
Analytical expressions for the maximum stable time step have
been derived. Larger stencils decrease the numerical phase
error making it significantly lower than FDTD for low and
medium discretizations. Stencil sizes greater than ten offer
a smaller phase error than FDTD even for discretizations
close to 50 cells/wavelength. The enhancement of wavelets

further improves the dispersion performance for discretizations
close to the Nyquist limit (2–3 cells/wavelength) making it
comparable to that of much denser grids, though it decreases
the value of the maximum time step guaranteeing the stability
of the scheme.
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