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Abstract—The finite-difference time-domain (FDTD) technique Perfect
is applied in the calculation of the S-parameters of diode mount- Electric
ing and waveguide-probe structures. The influence of the critical Conductor

geometrical design parameters on the coupling of the coplanar
feedline probe to the waveguide is investigated. A waveguide
absorber based on analytic Green'’s functions is used to minimize y
the reflections over a wide band of frequencies. XLL
Waveguide z
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I. INTRODUCTION

GNIFICANT attention is being devoted these days to the

nalysis and design of waveguide probes [1]-[4]. Many
different configurations of waveguide probes are used either to
sense the modal propagation inside the waveguides or to mount
active elements inside cavities. The common design objectivig. 1. Waveguide-probe structure.
is to maximize the coupling between the probe and waveguide
over the wi'dest possible frequency range. The charagterizatiorbsually more than one mode is excited inside the rect-
of waveguide probes demands an accurate calculation of

. i _ gular waveguide, making the numerical simulation tedious
scattering parameters over a wide band of frequencies. In tr?v'ﬁen using the conventional absorbing boundary conditions

Shielded
Coplanar

Feedline

paper, the finite-difference time-domain (FDTD) method [5 , , . . g
is used in the RF characterization of diode mounting a éBC s) [6], [7]. These ABC's specify the tangeqnal electric
Eeld components at the boundary of the mesh in such a way

Wavegwd(.a-pro.be structgres. The.wa\./egwde-probe geomeR¥t waves are not reflected. For TEM structures, the waves
analyzed in this paper is shown in Fig. 1. The probe is fe

by a shielded coplanar line and has the shape of a patch. I¥VJ|| be normally incident to the boundaries of the mesh, thus

IS : : e
inserted into the waveguide through a slot and is supported igguiring a simple approximate ABC—Mur's first-order ABC
a dielectric substrate, which is not connected to any wavegu

. The assumption of normal incidence is not valid for the
wall. The dimensions of the probe as well as the thickness aﬁ'(ﬁ‘g'nr? ff'?l(;s np_rroEpl\c’;llga::mglt trangigtlal to rtht? V\:ailis.n I;or :]Z'Sr
dielectric constant of the substrate are of critical importanégasq_’ or non- structures, the supera S,O ption boundary
to achieve broad-band coupling and low reflection loss. condition [7] is used in conjunction with Mur’'s absorber for

better accuracy. This combination results in an improvement

with respect to the reflection coefficient. However, despite the
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by higher memory and execution time requirements than the H*

conventional FDTD absorbers. Li-12, k172
In contrast to these approaches, we derive the diakoptics |

technique directly from Maxwell's equations following an |

approach similar to [16], and we use only total field values. |

The absorber proposed in this paper is based on the analytic

Green'’s functions of the waveguide modes. These Green'’s E-

functions are used to calculate the tangential electric (for bk -1

TE modes) and magnetic (for TM modes) field componen Yoo

located at the boundary of the mesh. The tangential fields ope gk

cell away from the boundary are decomposed into modes and, /

for each mode, the tangential field at the boundary is calculated -7

by taking the convolution of the mode amplitude and Greenis -

function for this mode with respect to time. For simplicity,| .-~ z

we consider only TE propagating modes, while the approach

for the TM propagating modes is dual and straightforward.

A similar approach based on numerical Green’s functions h&g 2. Yee's FDTD cell.

been presented in [17]. This approach requires the numerical

evaluation of each mode’s Green's function that is obtained byThe equations for thé&-field are dual to the above. The six

running an FDTD simulation for each mode and/or the applield components are considered to be interleaved in space,

cation of the FI3 principles. On the contrary, the absorber proas shown in Fig. 2. The indexes j, k, and! are related

posed in this paper analytically evaluates the Green'’s functioiasthe space and time coordinates wia= iAz, y = jAy,

by applying the inverse Fourier transform to the well-knowp = kAz, andt = [At, whereAz, Ay, Az, andAt represent

expressions in the frequency domain. Thus, similar accuragye unit space interval in the-, y-, z-direction, and unit time

is obtained without a significant computational overhead. interval, respectively. The electric conductors are assumed
The Gabor function is used as an excitation for the waves be perfectly conducting with zero thickness and, as an

guide mounting structures. A parametric study of the scatteriggcitation, we chose the Gabor function given by

parameters of the waveguide-probe geometry, shown in Fig. 1, (Gt ()

is performed for a number of geometrical parameters, and the ft)=e ‘ sin(wt) (4)

results are verified by data obtained from the finite-elemeghere pw = 2 - (V6/7(finax — funin)) to = 2pw, w =

E}

i,j-1/2,k

HZ

i-1/2,j-1/2, k

method (FEM) and measurements. 7(funin + fmax). By modifying the parametersw andw, we
can practically restrict the frequency spectrum of the Gabor
II. OVERVIEW OF THE FDTD TECHNIQUE function to the intervalfumin, fmax]- AS a result, the envelope

Yee's FDTD scheme [5] discretizes Maxwell's curl equa of the Gabor function represents a Gaussian function in both
téme and frequency domain.

tions by approximating the time and space first-order partial

derivatives with centered differences. For thefield, it is
Ill. ABSORBER DESCRIPTION

given by
. . For the sake of simplicity in presentation, we consider only
l+1/2Hi,j+1/2,k+1/2 - l—l/QHi,j+1/2,k+1/2 TEfn », modes, propagating in thedirection, and assume that
Af IE;“HI/Q bl lEij+1/2 X the Waveguide cross section is located on theplane. For
= : A, : the tangential magnetic field adjacent to the boundary of the
¢ mesh atk = n. — 0.5, (1) and (2) are simplified to
Er —E7
/7J+17k+1/2y /:J:k+1/2> 1) 141728 J+1/2n _os —i1—1/2H J+1/2n —0.3
Y Y At Ei,j+1/2,n; - Ei,j+1/2,n;—1
H1/2841/2 4, k+1/2 =128 /2 5 k41/2 = N_ Az (5)
At k12 — k1
:Z< 0 +/A.Z‘ Shasl l+1/2 z+1/2‘1n70o - 1/2 z+1/2‘1n70o
At 7 Joz— IE7
I g inir — BT k) @ _ At < +1/2,.m. 1A +1/2.m. ) (6)
Az Ho ?
w2 H g o — o 12Hi o 1 ok The absorber is used to calculate the tangential electric-field
ot o components at the boundary of the megah= n.) from the
t (B g = B tangential electric-field components one cell away from the
T e Ay boundary plandk = n, — 1). The tangential magnetic-field
EY BV ‘ componentsH?, , 5 and H/, . are updated using
+1’1+l/2’2 JF/ZE ) (3)  (5) and (6), and depend both on the values of the electric-
* field components calculated by Yee’'s FDTD scheme and on
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the values of the electric-field components calculated by theve equation is transformed into the frequency domain, and
absorber. Using (3), the normal magnetic-field components(a8) yields
k=mnz HY 112, May be calculated fronk , , , P (50)
and E} /20 . Thus, for theTE;, , modes, the normal L Zmn\® )
magneuc -field” components are also determined so that the
reflection from the boundary is minimized. A similar argument
can be used for the position of the absorber for the; TM
modes.

In order to derive the absorber based on the analyfic

Green'’s functions, we start with the wave equation in Cartesian

2

- <[3£,7n + /35,71 - %)Fm,n(sz) =0.
(14)

0z2

Following a procedure analogous to [16] and assuming a
|ven amplitudeF’,,, ,,((n. — 1)Az,w) of the TE;, , mode at
n. — 1, we obtain

coordinates T (20) = I8z mn (7—(nz—1)A%)
m,n\"~, - 2
1 0*F o2 o2 o2 1 82
2 92 ox2  Oyr 922 2 o N Fn((n: — 1)Az,w)
(7)
OF (2, w
where F' indicates the tangential electric-field components "3 Z 85 ) )
E*(z,y,2,t), EY(z,y, 2,t), and c represents the velocity of e i =(n:—DAz
light. The tangential electric-field components in the wave- N e IPzmn(z=(n:—1)A2)
guide can be written as 2
g : Frn n z = 1 Ava
B yat)= 30 S B (58) co(Bam) sin( By ut) < (e = 1)As0)
m=0n=1 —
8) LY OF o (2z,w)
[iz,rnn Oz z=(n.—1)Az
EY(z,y,z2,t) E:IE:O b0 (2, 1) sin(By ) cos(By ny) (15)
(9  with
where 1 Jw?—w?n, for w > we yn
mi ni Bz,rnn = ¢ 1 5 5 (16)
[3397771 - — ﬂ'y,n - T (10) —J Z \/wc,rnn — w7, for w S wc,rn,n
a

m, n € N, a x b are the waveguide cross-section area anvtherew. mn = c\/(Bz,m)? + (By,n)? is the cutoff frequency
E;, .(z,t) andEY, . (2,t) are the modal coefficients given byof the TE7, , mode. The function?’,,, ,,(z,w) has exponen-
tially increasing and decreasing solutions with respeet flor

- B — mo - w < wemn. The exponentially increasing solutions have to
By (2:1) = / / E*(w,y.2,t) vanish forz — oo for w < we mn, thus, (15) yields
s
- cos sin dz d 11 — OF (2
( o)sin (o) dedy (1) Frn((n: — )Az,w) = — GL)
B 0 ’ ﬁz,rnn 0z z=(n.—1)Az
51,0 = 22000 [ [ ez an

- sin (Ta:) Cos ( ) dz dy. (12) and

In (11) and (12)4,, o is the Kroenecker delta given by Fonn(z,0) =

1, form=20
6771,,0 — {0

Grg:, (7 — (n. — DAz,w)
Fon((n, — D)Az,w) (18)

, for m # 0. whereGrp: | (z,w) = ¢77%=m is the Green’s function for
the TE;, ,, modes. By satisfying (17) . n((n. — 1)Az,w)
In view of the above, (7) yields results in an outward propagating solution with respeet fior
P Fp (1) 1 8 W > Wemn ohly. Thus, computation OF,,.,,,,,,(z,w) _according
LQ“’ </x ot /ﬁm + = —2>Fm,n(z,t) =0 to (18) requires no backward propagating solution.
9z ct Ot Applying the convolution theorem [18], (18) in time domain
(13)  reduces to
+oo
where Fyy, . (2,t) = B3 (2,1). - Frn(z,t) = / Gre:, (z—(n.—1)Azt—t)

Applying the Fourier transformation(F,, ,(z,w) = —oo "

F{Fmn(z,t)}) with the angular frequencw = 2xf, the Fpp((n. — DAz, ') dt’ (19)
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whereGrp: | (2,t) = F~Y{Grr:_ (z,w)}. As a result, the
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P.E.C.

Excitation A.B.C.

tangential electric-field components at the boundary of the

mesh atk = n_. are expressed in the following form:

00
Fon(nAzt) = / GTE;W(AZ, t—#)

— o0

'Fnl,n((nz - 1)A2,t/) dt/ (20)

Following a procedure similar to [19F,,, ,,((n. —1)Az,¢')

can be expanded in a series of triangle basis functions i
time-domain. Inserting this expansion in (20) and sampling:

Iy, n(n.Az, t) using delta functions with respect to time, we

obtain

oo

Frn,n (TLZAZ, lAt) = Z

UV=—00

1—rGrpz

L,

Fon((n, — 1)Az, I'At) (21)
where the discrete FDTD Green’s functiog@rg: , may be
calculated analytically by

(G =

m,n

+oo
/ Gtz , (Az, IAt — 2)g(x) dz

—o

1 [t

GTEfm (Az,w)ﬁ(w)ej“"mt dw (22)

27r oo 31

andxz = ¢/ — I’ At. The triangle basis function is given by

1—1— for |z| < At
g(z) = Al lz| <
0, for |z| > At.

and its Fourier transform is

 (wAt\ 77
glw) = Flg(t)} = At M .

wAt (23)
2
Due to causality, we have
lGTEfn,n =0 forl<O (24)
and, as a result,
{
Frn,n (HZAZ, lAt) = Z lfl’GTEfnn
UV=—00

Fon((n. — 1)Az, I'At) (25)

which represents the mathematical formulation of the Diakop-

tics technique.
As an example, let us consider ti&7 , mode. For they-
component E? of the tangential electric field dt = n._,

1,7,z

(9) and (25) yield

{
IE;U’L”/: = Z - GTE;,O E'io((nz — 1)A2’, l/At)
/'=—oc

-sin(midz/a) (26)

: |

7=0 7=2840 Az

Fig. 3. Waveguide test structure.

z=2880 Az

where EY ((n. — 1)Az, ' At) may be calculated from (12).
The discrete FDTD Green’s functiqnl,GTEi . is given by

1 oo o
G, “or oo GTEE,O(Az,w)Q(w)eMU At g,
(27)
with g(w) given by (23) and
aTE{ O(AZ7 CU) = G_JrBZJOAZ (28)

where 3. 10 is calculated by (16) fofn = 1 andn = 0.

IV. ABSORBER EVALUATION

To validate the absorber presented herein, we calculate the
magnitude of the reflection coefficient in frequency domain
for the waveguide structure shown in Fig. 3. Thgplane of
the waveguide at = 0 is short circuited and the ABC is
utilized to calculate the electric-field components in the
plane atz = 28380Az. The waveguide cross section is 47.6
mm x 22 mm and the cell size is given bz = 4.76 mm,

Ay = 1.1 mm, andAz = 0.4 mm. We use a mesh of the size
10 x 20 x 2880 and run the simulation for 25 000 time-steps.
All conductors are assumed to be perfect electric conductors
(PEC's).

We simulate the wave propagation for frequencies between
3.1-7.4 GHz so that the following three different modes are
excited:

1) TE] o;

2) TE3q;

3) TEg ;.

To accommodate the presence of these three modes, we use
a superposition of three Gaussian pulses multiplied with the
corresponding mode patterns at = 2840Az to provide

the correct excitation. For the calculation of the reflection
coefficient p, we use the formula

_ Et - Eref

Eref (29)
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— Green ABC
—10F —= PML [4 Cells] 8

Reflection Coefficient (dB})
S11 [dB]

1 1 1 1 1 1 I 1 70 1 I I 1 I I I

35 4 4.5 5 5.5 6 6.5 7 3.5 4 45 5 5.5 6 6.5 7
Frequency (GHz) Frequency [GHz]
Fig. 4. Reflection coefficient for th&'E} , mode. Fig. 5. Comparison of Green’s function ABC and PML.

whereE, is the tangential electric field probedat 2860A» the absorber becomes. F@r = 2646, the amplitude of the
and E,.; is the tangential electric field probed at the samf€flection coefficient is less thard0 dB for almost the whole
position of a semi-infinitely long waveguide (no effect fronfrequency range. Thus, the ABC based on the analytic Green’s
reflections from the ABC) with the same cross section. THENction is effective in a much wider frequency range than the
semi-infinite length of the waveguide is approximated b§uperabsorbing first-order Mur ABC. This is true even when
6700A~ and the tangential electric field is probed again df€ improve the performance of the superabsorbing first-order
» = 2860Az. The evaluated ABC is replaced by a PECMur ABC by applying it to each waveguide mode separately.
The length of this reference waveguide is chosen such as $ignilar results were observed for the reflection coefficient for
reflections from the PEC plane return to the probe positidhe TE3, and TEG, modes.
for the 25000 steps of simulation. The absorber based onfhe perfectly matched layer (PML) absorber [20] achieves a
the analytic Green’s function is compared to the first-ordé@mparable behavior for a wide frequency range. For example,
Mur's ABC coupled with the superabsorption condition. Thée length?” = 2646 of the discreteTE] , Green’s function
effective dielectric constant [7] for the superabsorber is chosefiers a reflection coefficient very close to that of a PML layer
to 0.407. of four cells with R = 10~® (see Fig. 5) andl’ = 4161

For practical applications, the infinite summation in (25as similar performance with a PML layer of eight cells
has to be approximated by a finite number of teffasThis With B = 107°. Generally, considering larger values of
approximation corresponds to a truncation of the discreifee IengthT is equlvalent to increasing the number of the

FDTD Green’s function according to PML cells. Nevertheless, the memory requirements of the
absorber proposed in this paper are much lower than the
1Grg;, , =0 fori>T (30) memory requirements for the PML absorber. For each mode,

whereT” represents the length of the discrete FDTD Greent%e convolution of (,26) requires the storage O.f thieterms
function with respect to time. We obtain of the modal Green'’s function and of ti¢ previous values

of the mode amplitude at the = (n, — 1)Az. Thus, the
! , extra memory requirement of the Green’s function absorber
Frn(ne:,t) = Z v Grez, Fnn(n: —1,1) (1) s 2 x T real numbers per mode. A PML layer & cells

U=t=T to the »-direction requiresM = 6 x N x n, x n, New
and (26) can be written as variables, wherei, x n, is the grid size for the waveguide
. cross section. Generally/ > 2x 7, especially for large grids.
EY. = Z G EYo(n, — 1,1)sin(milz/a). _Due to _the details of the \_Navegwde-pro_be structure ana_llyzed
s v o in Section V, the waveguide cross-section grid has a size of

(32) 477 x 220 cells. That means that even a PML layer of four
cells to thez-direction requires the storage 8f = 2518 560
The reflection coefficient is minimized if we truncate theew variables. Using an absorber based on Green'’s functions

discrete FDTD Green'’s function at its zeros. In Fig. 4, resultgith length7” = 2646 for the TE7 ,, 7" = 2238 for the TE3 ,
for the reflection coefficient for th&'E7 ; mode are shown and7" = 2412 for the TEg ,, only 14592 new variables have
for three different values of’, 616, 1127, and 2646. Theto be stored (0.58% of the PML memory requirements). As
graph for the first-order Mur ABC with the superabsorptioa result, the Green’s-function-based ABC offers a significant
condition is symbolized with (sup). The larger the len@th economy in memory, while maintaining similar accuracy with
of the discrete FDTD Green'’s function, the more effectivihe PML absorber.
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CPW Waveguide Probe
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Frequency [GHz] Fig. 7. Reflection coefficient for different dielectric thicknesses.

Fig. 6. Validation data for the reflection coefficient. . . . .
functions for the three propagating waveguide modes is used

at the terminal plane. For the FEM simulation, an artificial

absorber depending on frequency and angle of incidence is

The FDTD technique coupled with the proposed waveguidgplied to terminate the waveguide. For the whole operating
absorber is used in the RF characterization of the waveguidieequency range (3.1-7.5 GHz), the performance of both
probe geometry shown in Fig. 1. The probe in the shapdsorbers is comparable, and the results show very good
of a rectangular patch is fed by a shielded BCcoplanar agreement.
line and is inserted into the waveguide through a slot. TheThe dimensions of the shield of the coplanar feedline are
dielectric substrate carrying the probe is not connected to actyosen to be 5.8 mnx 3.8 mm, such as only the coplanar
waveguide wall. This type of probe can be used as a coupleaveguide (CPW) dominant mode can propagate and the field
to a rectangular waveguide or as a diode-mounting structupatterns are not disturbed by the sidewalls in the frequency
The dimensions of the probe, as well as the substrate thicknemsge of the simulation. In this way, the superabsorption
and the dielectric constant of the substrate, are of criticedndition can be effectively applied at the input plane of the
importance in optimizing coupling to the waveguide. feedline.

In our simulations, we try to optimize the thickness of The performance of the probe has been evaluated for three
the dielectric substrate carrying a probe which is 3.6-mdifferent dielectric thicknesses 2.0, 1.2, and 0.0 mm, with the
wide. The dielectric constant of the substrate is assumedlast value corresponding to a microwave probe printed on a
be ¢, = 12 (GaAs). The width of the dielectric substratedielectric membrane [21]. Results in terms of the reflection
entering the waveguide is 5.8 mm and its thickness is lingoefficient are shown in Fig. 7. As can be observed from
ited to less than 2 mm. The probe is designed to feedF&. 7, the value of the reflection coefficient reduces over
WR-187 rectangular waveguide and, for this reason, excitatianlarge frequency range and shows symmetrical behavior
is provided on the coplanar feedline by a Gabor functioayound the center design frequency as the dielectric thickness
which covers the frequency range of 3.1-7.4 GHz. For ttpproaches zero. The electric-fi¢l) and magnetic-field 7 )
simulated frequency range, three different modes are excigidtributions for zero dielectric thickness are plotted for
inside the waveguide-FE7 ;, TES o, and TEg ;—with the 6000 time steps across the probe structure symmetry plane (see
cutoff frequencies 3.15, 6.30, and 6.82 GHz, respectively. Th@y. 8) and across the coplanar feedline plane (see Fig. 9), and
mesh used in the FDTD simulation consists of 48@77 x represent the transmitted and the reflected energy, respectively.
52 cells with a time step ofAt = 0.314 25 ps. The simulation  The reflection coefficient of the Si-membrane printed probe
runs for 20000 time steps to achieve converging results. Thas been calculated for four different patch widths 3.6, 9.8,
absorber discussed previously is used to simultaneously absbtb4, and 13.0 mm, and the results are shown in Fig. 10.
all propagating modes of the waveguide for the simulatddom Fig. 10, it can be concluded that the width of 9.8 mm
frequency range. offers the most symmetrical behavior for the frequency of

To characterize the probe performance for different dieleoperation. The reflection coefficient for widths larger than
tric thicknesses, the magnitude of the reflection coefficieBt8 mm is much smaller than that of 3.6 mm for most
|S11] for the dominantTE] , mode is calculated. For vali- of the simulated frequencies, except a small region round
dation purposes, the calculated results are compared to daiGHz. Nevertheless, the widths of 11.4 and 13.0 mm offer
derived by the FEM assuming a probe width of 3.6 mm andre significant improvement over the width of 9.8 mm.
dielectric thickness of 2.0 mm (see Fig. 6). For the FDTD Another geometry parameter of the Si-membrane printed
simulation, the waveguide absorber based on the Greept®be that has been investigated is the distance of the probe

V. WAVEGUIDE-PROBE STRUCTURE CHARACTERIZATION
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Fig. 8. FE- and H-field distributions across the probe-structure symmetry plane.
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Fig. 9. E- and H-field distributions across the coplanar feedline plane.

patch from the short circuit of the waveguide. Lengths of 8.8he FDTD and experimental results is good, especially in the
10.4, 12.0, and 13.6 mm have been used, and the resfiésjuency range of the optimum performance of the probe. The
are plotted in Fig. 11. It can be noticed that the value @fbrupt variation inS,; observed for the higher frequencies in

12.0 mm offers the best performance in terms of the valtiee experiment is perhaps due to calibration or other reasons

and bandwidth of the reflection coefficient. related to the experimental setup.
The FDTD results derived by using the absorber presented
in Section Il have been validated by comparison to experi- VI. CONCLUSION

mental data. The probe has dimensions 13.2 mHh3 mm on The FDTD method has been used to analyze a waveguide-
a dielectric substrate with thickness 2.1 mm, width 28.7 mrgrobe structure. For the analysis, a waveguide absorber based
and ¢, = 13. The probe has been inserted in a WR228n analytic Green’s functions has been developed. This ab-
waveguide and is located at a distance of 14.7 mm from tBerber is characterized by a better performance in accuracy and
top-surface short circuit. For the FDTD absorbér= 2871 computational efficiency than the superabsorbing first-order
time steps have been used. The performance of the probe kag ABC, and by a better performance in memory require-
been evaluated for the frequency range of 3.3—4.6 GHz, and thents than the PML absorber. The scattering parameters of
results are shown in Figs. 12 and 13. The agreement betwdam probe structure have been calculated, and the results have
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Fig. 13. Experimental validation fofs; .
Fig. 10. Reflection coefficient for different patch widths.

been verified by comparison with the FEM and experimental
data. The influence of critical geometrical parameters on the
probe performance has been investigated and optimized.
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