
A Machine Learning-Enabled mmID-Sensor for
High-Accuracy Orientation and DoA Estimation

Marvin Joshi
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

mjoshi5@gatech.edu

Genaro Soto-Valle
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

genarosva@gatech.edu

Charles Lynch
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

clynch19@gatech.edu

Manos Tentzeris
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

etentze@ece.gatech.edu

Abstract—In this work, the implementation of a machine learn-
ing algorithm in conjunction with a Frequency-Modulated Con-
tinuous Wave (FMCW) radar system and a miniaturized ultra-
low-power 24 GHz–mmID for precise localization, orientation
sensing, and direction of arrival (DoA) estimation is presented.
The rotational sensing capability is exploited by the use of
four antenna elements with different polarization offsets between
each other. The Multiple Signal Classifier (MUSIC) algorithm is
employed for accurate DoA estimation, utilizing a single input
multiple output (SIMO) custom antenna configuration on the
reader system. The supervised learning KNN-model enabled
achieving a high accuracy < 1° orientation detection along the
z-axis, whereas the MUSIC algorithm achieved a mean error of
< 1° in DoA estimation over a wide azimuth range of ±45°, both
at a range of 4m. The proposed system presents an important
step for envisioning highly accurate virtual reality and motion-
tracking systems in real time.

Index Terms—millimeter-Wave, RFID, Machine Learning,
Radar, AR/VR, Localization

I. INTRODUCTION

In recent times, there has been an increasing interest in
the development of virtual reality (VR) technologies, which
has been pushed forward by other emerging trends including
the Internet of Things (IoT), digital twins, Industry 4.0, and
even telemedicine. In this regard, accurate localization sensing
technologies are crucial for enabling the next generation of VR
systems, and Radio Frequency Identification (RFID) systems
have shown great potential for enabling them.

RFID technology – especially at UHF frequencies – has
been widely used for decades in multiple commercial and
industrial applications such as inventory management, security
systems, logistics tracking, among others. The increased avail-
ability of 5G/mm-Wave systems has enabled RFID to extend
to higher frequencies, supporting higher data rates, higher
localization resolution and allowing to design more compact
systems, overcoming some of the limitations of using UHF
frequencies. This has made mm-Wave RFID (mmID) technol-
ogy an excellent candidate for highly-accurate localization in

VR systems, however, it is still in the very early stages [1],
[2].

The use of Frequency-Modulated Continuous Wave
(FMCW) has become a popular approach for RFID tag lo-
calization, especially for mm-Wave RFIDs systems, as off-
the-shelf FMCW radar systems are becoming more available
and low-cost. In addition, machine learning (ML) algorithms
have proved to enhance detection accuracy for different RFID
systems where multiple data dimensions need to be analyzed,
enabling applications such as precise human body tracking
[3], precise multitarget localization [4], and enhanced chipless
RFID detection [5].

In the context of VR and motion tracking scenarios, orienta-
tion and direction of arrival (DoA) estimation becomes crucial
parameters for precise object tracking. Different works have
reported different methods for orientation and DoA detection,
demonstrating the ability to sense orientation and localization
at the same time by utilizing multiple tags and/or multiple
reader configurations [5], [6]. However, the use of UHF
frequencies for these systems limits their spatial resolution
and makes the overall system rather bulky. In this work, the
integration of a miniaturized, ultra-low-power mmID system
with ML algorithms is proposed to enable high-accuracy
orientation detection as well as a angular estimation in the
azimuth direction.

II. MMID TAG AND READER CONFIGURATION

A. Low-Power Gyro mmID Tag

The mmID tag utilized in this work for three-axes orien-
tation detection has an operating frequency of 24.125GHz
and is composed of four antenna elements and the baseband
circuitry, similar to the one presented in [2]. Each of the
antenna elements was designed using a cross-polarized config-
uration to improve self-interference rejection, and they utilize
a low-noise FET (CE3520K3, CEL) for load modulation.
The baseband circuit consists of a 3V coin cell battery, a
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1.8V regulator, and an ultra-low-power resistor-set voltage-
controlled oscillator (LTC6903). The mmID tag has an overall
miniaturized size of 43mm × 25mm and was fabricated on
RO4350B substrate (ϵr = 3.66, tan δ = 0.0037), keeping a
6.5mm separation (≈ λ/2) between each radiating element,
as presented in Fig. 1a. Here, each element is labeled from A
to D.

The rotation detection around the z-axis (Roll rotation, as
shown in Fig. 1b) is enabled by the fact that, for a linearly-
polarized interrogation, the angle offset of each element alters
the polarization mismatch factor, which allows encoding of the
rotation angle in the amplitude response of the backscattered
signal. The use of four antenna elements with a polarization
offset of 15° between each other allows tracking the amplitude
change of each channel and to resolve angular ambiguities
based on the different responses. Finally, the discrimination of
each receiving channel is achieved by selecting different mod-
ulation frequencies for each element. These were selected so
harmonic interference is avoided, so 49 kHz, 69 kHz, 85 kHz,
and 110 kHz were chosen for elements A to D, respectively.

x

y
Roll

Yaw
Pitch

z

43 mm

25 m
m

6.5 mm

A B

CD

(a) (b)

Fig. 1. (a) Fabricated mmID Gyro tag denoting its four antenna elements and
baseband circuit components. (b) Diagram of rotational movements for each
axis.

B. FMCW Reader System

The reader utilized in this work is the 24GHz EVAL-
RADAR-MMIC2 designed by Analog Devices. This FMCW
radar is a low-cost, readily available chipset comprised of
the ADF5901 24 GHz Tx MMIC, the ADF5904 24GHz Rx
MMIC, and the ADF4159 13GHz PLL, which allows to
synthesize a series of chirps for the mmID interrogation and to
perform demodulation by mixing the transmitted and received
signal. Each demodulated baseband signal is then sampled and
visualized using the Tektronix DPO7354 Oscilloscope.

In order to support single input multiple output (SIMO)
configuration, a custom-made cross-polarized antenna module
composed of one transmitting element and four receiving ele-
ments was utilized. The Tx element is a single microstrip patch
antenna, whereas each of the Rx elements consists of a series-
fed linear patch antenna array separated by λ/2, achieving
higher antenna gain. The antenna module was fabricated on
RO4003 substrate (ϵr = 3.38, tan δ = 0.0027), has a total size
of 120mm × 67mm, and exhibits high Tx/Rx interference

isolation due to the cross-polarized configuration. The layout
of the antenna module, as well as the reader schematic, are
shown in Fig. 2.
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Fig. 2. Antenna module layout (top) and reader system schematic (bottom)
utilized for mmID rotation and DoA detection.

III. SIGNAL PROCESSING FRAMEWORK

A. Tag Amplitude Detection

The radar was programmed to a triangular waveform with
chirp period of 5ms and frequency slope of 400MHz/µs. With
the oscilloscope configured to a sampling rate of 500 kHz
for 200ms, this results in 19 complete triangular chirps.
Each of the positive and negative ramps from the triangular
waveform were processed separately, which results in 38
unique observations for each receive channel. The collected
data from each receive channel was combined to form a radar
cube, with dimensions of Samples × Chirps × Channels.

Fig. 3 summarizes the diagram of the processing chain.
To visualize the tag from the baseband signals, a range Fast
Fourier Transform (FFT) is performed across the Samples
dimension of the radar cube. From the magnitude spectrum,
the information from the tag can be seen. Fig. 4 is an example
spectrum of the tag, where the modulation peaks of each
element on the tag are shown, centered around their respective
modulation frequency.

B. Direction of Arrival

With the use of a SIMO radar, direction of arrival (DoA)
techniques can be implemented to determine the angular
location of the tag in the azimuth direction. While popular
methods, such as the Capon Beamforming and Bartlett Beam-
forming have been used for their low complexity and easy im-
plementation, super resolution algorithms have been shown to
provide higher accuracy [7]. These high-resolution algorithms
fall into the approach of using subspace-based techniques.
These techniques involve the use of eigen-decomposition to
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Fig. 3. Flow Chart of Signal Processing Chain

isolate noise and signal subspace [8]. The Multiple Signal
Classifier (MUSIC) algorithm is one of the most widely used
subspace-based methods [9]. The algorithm uses eigenvalue
decomposition on the covariance matrix of the received sig-
nals, which results in two orthogonal subspaces, one in a
noise subspace and the other in a signal subspace. Using these
subspaces, a spectrum can be formed to estimate the DoA.
First, the covariance matrix is calculated using (1), where S is
the number of samples.

Fig. 4. Magnitude Spectrum of mmID Tag at Boresight

Rxx =
1

S

S∑
n=0

xnx
H
n (1)

Next, the eigenvalue decomposition is performed on the co-
variance matrix and the eigenvalues are sorted from smallest
to largest. Using these sorted eigenvalues, the eigenvectors
are now sorted into signal and noise subspaces, Qs and Qn

respectively. The pseudospectrum can now be formed using
(2), where a(θ) is the steering vector.

PMUSIC(θ) =
1

aH(θ)QnQH
n a(θ)

(2)

While these algorithms are computationally longer, sub-
space base techniques allow for higher resolution and higher
accuracy estimates [8].

C. Digital Beamforming

While beamforming has been primarily used for steering
the beam of an antenna in a certain direction, adaptive digital
beamforming methods have been shown to increase the SNR
of a signal in a scene [10]. Beamforming can be applied to both
transmitting and receiving elements, but for this work, only
the received data will be beamformed. The effectiveness of
a system’s beamforming capabilities will primarily dependent
on the total number of channels available in the system, and
the accuracy of the DoA estimation methods. The beamformed
data can be defined by (3), where y(k) is the beamformed data,
wn is our weight vector, xn(k) is our radar cube and N is the
number of channels [10].

y(k) =

N−1∑
n=0

w∗
nxn(k) (3)

Using the MUSIC DoA method, the angular location of the
tag in the azimuth plane is found, with the estimated angle
denoted as θ. For every angle, θ. found, a new wn will need
to be calculated, and subsequently apply them to our original
radar cube, x(k), resulting in ym(k) where m = 1 − M
and M is the number of subjects. The FMCW radar used in
these experiments contains one transmitter and four receivers,
which results in four virtual azimuth channels. The four
virtual channels form a linear array with a spacing of half-
wavelength. Using this information, the weight vector, wn,
can be calculated as shown in (4), where k0 is the free-space
wavenumber and d is the spacing between channels. Given our
special case where d = λ

2 , the weight vector can be further
simplified to become (5). In Fig. 5, the beamforming process
is summarized, and it shows how the weights will be applied
to each channel.

wn = e−jk0dncosθ (4)

wn = e−jπncosθ (5)

D. Phase Extraction

Using the beamformed data, a range FFT is again performed
to decode the tag. Utilizing a custom peak detection algorithm,
the modulating beat frequencies of each element can be iden-
tified, which allows for the extraction of the phase difference
of the antenna elements on the tag. It has been previously
shown that the localization using the phase difference of two
receiving antennas has provided higher accuracy at farther
ranges when compared to techniques utilizing just received
signal strength [11]. The Arctangent Demodulation algorithm
is a phase based method used to extract the phase of I/Q
Signals. This algorithm determines the phase angle of the radar
signal and prevents large phase drift with the use of phase
unwrapping [12]. With the mmID comprised of 4 antenna
elements, the phase difference of neighboring elements, i.e
elements B-A, C-B, D-C and A-D, are calculated.
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Fig. 5. Digital Beamforming of Radar Cube

E. Machine Learning Model

In this work, a K-Nearest Neighbors (KNN) machine learn-
ing algorithm is used to train and predict the orientation of the
tag. The KNN algorithm is distance-based, where it classifies,
or groups, a given data point to observations that are the
most similar. This make the KNN network an ideal model
for this work. The model uses the amplitude response of each
element on the tag, along with the phase difference from the
neighboring elements, i.e elements B-A, C-B, D-C and A-D,
as inputs.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Direction of Arrival Estimation

Various tests are performed to display the capabilities of the
mmID tag. A visualization of the measurement setup can be
found in Fig. 6. In the first set of experiments, the angular
localization ability was investigated. The tag is placed on
a 3-Axis Gimbal Holder at a radial distance, R, from the
front of the readers antenna. While keeping the radial distance
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Fig. 6. Measurement setup for DoA and orientation detection. The mmID
tag was measured at different ranges, R, and different azimuth angles, φ.

constant, the mmID was moved from ± 45° in steps of 5°.
This measurement was performed at radial distances of 1−
4m, with steps of 1m. Utilizing 210 data samples, the results
from these measurements can be found in Table I. It can be
seen that while the angular estimation does increase across the
different ranges, utilizing the MUSIC algorithm has allowed
for the error to remain below 1°. Fig. 7 shows the results from
the 4m scenario, where the estimated angles match well with
the ground truth.

TABLE I
DOA ESTIMATED MEASUREMENT RESULTS

Range MUSIC Mean φ error

1m 0.157°
2m 0.211°
3m 0.632°
4m 0.947°

Fig. 7. Predicted vs. Real DoA Estimation at 4m

B. Tag Orientation Estimation

The next set of measurements were to determine the ability
to extract the orientation of the tag. The tag was mounted on
a 3-Axis Gimbal and placed at boresight at a distance, R, in
front of the radar. While holding the Yaw and Pitch axes, the
mmID was rotated along the Roll axis in 1° steps over an
angular range of ± 90°. The measurements were performed at
distances of 1− 4m, with steps of 1m. With 38 observations
taken per each rotation angle, a global data set of 27,512
unique observations was formed. The dataset was then split
into 80% for training and 20% for testing the model. The
results from the KNN Model can be found in Table II. The
table shows high accuracy in detecting the orientation angle,
as the maximum mean orientation error was only 0.1043° at a
distance of 4m. The results from the 4m experiment can be
found in Fig. 8. Confirming the results of the table, it can be
seen that near zero orientation error was achieved.
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TABLE II
ACCURACY AND MEAN ERROR PERFORMANCE OF KNN MODEL AT

DIFFERENT TEST RANGES

Range KNN Model Accuracy Mean Orientation Error

1m 99.21% 0.0284°
2m 97.97% 0.0775°
3m 94.59% 0.0672°
4m 93.06% 0.1043°

Fig. 8. Predicted Orientation vs. Real Orientation in Roll Axis at Distance =
4m

V. CONCLUSION

In this work, the authors have proposed the utilization of
a simple and robust KNN machine learning algorithm in
combination with an FMCW reader and an ultra-low-power
24GHz–mmID tag for high-accuracy rotational sensing and
DoA estimation. The MUSIC algorithm was employed for
DoA estimation, which allowed to obtain a mean error of less
than 1° in azimuth direction at a 4m range. Moreover, the
KNN model achieved an accuracy of 93.06% in orientation
detection at the same range, with an error of only 0.1°.
The system has great potential for applications in augmented
reality, motion capture, and accurate object tracking, where
fine spatial resolution is crucial for mapping real-world objects
into the digital world, enabling very low-cost and highly-
scalable tracking systems.
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