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Abstract— Package-integrated and ultrathin power dividers
with footprint smaller than unit λ0

2 at the operating frequency
of 28-GHz 5G new radio (NR) n257 and n258 bands are
presented for the first time for small-cell applications. These
power dividers are also configured as antenna arrays using
endfire Yagi–Uda antenna elements. Utilizing minimal matching
techniques, two-, three-, and four-element antenna arrays are
designed without compromising on the bandwidth of operation
or electrical performance. These thin-film power dividers exhibit
a cross-sectional height of 147 μm and can be implemented in the
top metal layer of front-end module packages. Panel-compatible
semiadditive patterning (SAP) process is utilized to realize these
structures, which yields precise line space dimensions required for
millimeter-wave (mm-wave) applications. This results in power
dividers with low added insertion loss, low VSWR, and minimal
phase difference between output ports. The added insertion loss
is 25% less than similar structures reported on integrated fan-
out architectures. The antenna arrays exhibit high gain and
efficiency. Excellent model-to-hardware correlation is observed
with multiple coupons of the same structure. Package-integrated
power dividers and antenna arrays based on ultrathin laminated
glass substrate represent a major step toward realizing compact
mm-wave antenna-in-package for 5G small-cell applications.

Index Terms— 5G and millimeter wave (mm-wave), antenna-in-
package (AiP), new radio (NR), power divider, RF, semiadditive
process, small cell, Yagi–Uda antenna.

I. INTRODUCTION

H IGHLY INTEGRATED solutions for modern radios
are transforming wireless communication networks to

achieve higher data rates, spectral efficiency, and energy
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Fig. 1. Cross section of a state-of-the-art glass-based 5G module with endfire
radiators for wireless communication applications.

efficiency. Increased functional density of small-footprint com-
ponents and modules is crucial to meet the growing demand
of 5G and millimeter-wave (mm-wave) infrastructure and user
equipment [1]–[3]. Package-integrated phased-array antennas
and passive components, with single-chip or multichip trans-
ceiver solutions, are the key enabling technologies for the next
generation of radio solutions [4]–[7]. To overcome the chal-
lenge of increased path loss with the use of 5G new radio (NR)
bands such as n257 and n258 while providing Gb/s data
rates with low latency, the 5G base stations and user equip-
ment will have to rely on directed communications [8], [9].
System-level implementation challenges can be translated to
IC- and package-level requirements that are vital for mm-
wave 5G hardware and software codesign [10]. Some of
the circuit and phased-array IC level challenges are to have
reasonable spatial isolation between the links provided by
beamforming, support for dual polarization and finer resolution
in phase shifter. Since the antenna is the largest element in
an antenna-in-package (AiP) and essentially governs its size,
the antenna (or antenna array) needs to be wideband with equal
length feeding lines, support dual polarization with low cross-
polarization distortion, and have the tunability to support mul-
tiple beamforming and beam-steering algorithms [11], [12].
Similarly, the package needs to support heterogeneous inte-
gration of multiple RFICs for scalability, seamless routing
and interconnects, high thermal efficiency, as well as multiple-
functionality passive components [13].

Packaging technologies for mm-wave modules include
low-temperature cofired ceramic (LTCC) [14], [15], organic
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Fig. 2. Material stack-up for the demonstration of power dividers and antenna
arrays.

laminates [4], [6], [16], [17], and fan-out wafer-level pack-
ages (FOWLPs) [18]–[20]. There are several fundamental
challenges and limitations of each technology in terms of
dimensions of realizable line space, precision control, density
of line space, via processability, reliability, scalability, and
warpage. Glass-based packaging has emerged as a competitor
of these technologies to realize precision, fine-line features
with silicon-like dimensional control, and tunable coefficient
of thermal expansion (CTE) for various applications. In par-
ticular, mm-wave packaging applications can take advantage
of fine-line features on redistribution layers (RDLs) on glass
as the dimensional requirements affect the electrical perfor-
mance at those frequencies. They also benefit from 3-D active
components integration with shortest interconnection heights
enabled by low CTE and high reliability of glass.

A cross section of a 5G AiP with endfire antennas is shown
in Fig. 1. This module has heterogeneously integrated active
and passive devices with high-density layers for digital routing
as well as seamless interconnects and vias for low-loss RF
implementation. In this article, package-integrated, ultrathin,
wideband, and small-footprint (<unit λ0

2) power dividers are
presented for 28-GHz 5G n257 and n258 bands, which have
a combined frequency range of 24.25–29.50 GHz and have a
fractional bandwidth (FBW) of 19.53%. Three power divider
configurations are modeled and designed: two ways, three
ways, and four ways. Ultrathin glass substrate is selected
as the core material onto which low-loss, thin-film polymer
dielectrics are laminated. These polymer dielectrics act as
fine-line RDL onto which copper is patterned precisely using
semiadditive patterning (SAP) process [21]. Through-glass
vias (TGVs) and via-in-via in polymer dielectrics are used
to establish transmission-line structures. The power dividers
are also configured as endfire antenna arrays using wideband
Yagi–Uda antenna elements and can be integrated on the top
metal layer of RF front-end packages with strict-footprint
requirements, such as shown in Fig. 1.

II. POWER DIVIDER DESIGN AND FABRICATION

A. Material Stack-Up

The material stack-up for this demonstration is shown
in Fig. 2. A 15-μm epoxy film from Taiyo: Zaristo, laminated
onto an AGC EN-A1 100-μm glass core, is chosen as the
substrate for the power dividers. The glass substrate has
a dielectric constant (Dk) of 5.4 and a loss tangent (Df)
of 0.005 and Zaristo film depicts Dk of 3.2 and Df of 0.0025,

Fig. 3. Circuit schematic for designing power dividers.

characterized at 10 GHz. The desired copper thickness is set
to 8 μm, which is more than five times the skin depth at
the highest operating frequency of 29.50 GHz. The design
rules are also set at the modeling stage and are listed in the
following.

1) Critical dimension (min. width) and line space: 35 μm.
2) TGV and via-in-via diameter: 100 μm.
3) Via pitch: 450 μm.

B. Power Divider and Yagi–Uda Antenna Array Design

T-junction is the basis of transmission-line modeling of the
equal-split, microstrip power dividers, as shown in Fig. 3.
Alternatively, a reciprocal and matched (at all ports) power
divider, commonly known as Wilkinson power divider, is fre-
quently used as it provides isolation between output ports. For
small-footprint applications, Wilkinson power divider can be
disadvantageous as it requires a lumped resistor between the
output legs of the power divider. Moreover, as the power divi-
sion ratio is increased to more than two-way split, the Wilkin-
son power divider implementation becomes complex and it can
require a multilayer stack-up [22]. Looking into the junction
in Fig. 3, the total admittance (Yin) is seen as the sum of
admittance of the output legs in combination with the stored
energy at the junction

Yin = j B + 1

Z2
+ 1

Z3
+ · · · (1)

where j B represents the sored energy as the lumped suscep-
tance (B) and Zn (n = 2, 3, 4 . . .) are impedances of the
output legs. This susceptance in (1) can be neutralized either
by discontinuity compensation or by a reactive tuning element,
and it is nonzero in practice. For the demonstrated power
dividers, the matching between the input and output ports
is performed using a single-section quarter-wave transformer.
The transformer can also aid in neutralizing j B but as the
split-ratio increases, j B starts dominating and can limit the
bandwidth of the structure, along with the bandwidth limita-
tions of the impedance transformer. This was observed in the
four-way power divider design in which the direct split led
to slightly reduced bandwidth (18%) compared to the target.
Since bandwidth is a critical performance parameter, the four-
way power divider was implemented using three two-way
power dividers as an alternative. Two- and three-way power
dividers have reduced effects from j B and are thus more
wideband than their four-way counterpart. The finalized design
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Fig. 4. Layout of 2 × 1 Yagi–Uda antenna array.

of all power dividers fulfills the bandwidth requirements and
covers 24.25–29.50-GHz frequency range. Yagi–Uda antennas
designed for 28-GHz 5G n257 and n258 bands with 4-dBi
realized gain are then used to configure the designed power
dividers as antenna arrays [23], [24].

Since the stack-up consists of three layers and the microstrip
structure is selected for power dividers, it is imperative
to find out the effective electrical properties to realize the
transmission-line dimensions for a given impedance and elec-
trical length. The following set of equations can be used to
calculate the frequency-independent effective dielectric per-
mittivity (εrc) of this stack-up [25], [26]:

εrc = |d1| + |d2| + |d3|∣∣ d1
ε1

∣∣ + ∣∣ d2
ε2

∣∣ + ∣∣ d3
ε3

∣∣ (2)

for hn + hn−1 + · · · + h1 � λ/10

dn = K (kn)

K �(kn)
− K (kn − 1)

K �(kn − 1)
− · · · − K (k1)

K �(k1)
. (3)

Generally, the value of kn and K ()
K �() is defined as follows:

kn = 1

cosh
(

wπ
hn+hn−1+...+h1

) , for n = 1, 2, 3, . . . (4)

K (kn)

K �(kn)
= 1

π
ln

(
2

1 + √
kn

1 − √
kn

)
, for 0.7 ≤ kn ≤ 1. (5)

εrc gives a baseline to calculate the width of the transmission
lines for a certain impedance. It can also be estimated by
observing the contribution of dielectric materials in this stack-
up. Since Dk of the 30-μm total thickness of polymer is
3.3, Dk of the entire stack-up is estimated to be slightly less
than that of glass. Full-wave electromagnetic simulators can
also be used to find the dimensions of lines corresponding
to required impedances. Ansoft HFSS is utilized to simulate
power dividers and antenna arrays. The layout of 2 × 1
Yagi–Uda antenna array is shown as an example in Fig. 4
and its key parameters are given in Table I. As evident from
the figure, TGVs are utilized to connect the top and bottom
ground planes for measurements using GSG probes.

TABLE I

KEY PARAMETERS OF YAGI–UDA ANTENNA ELEMENT AND
TWO-WAY POWER DIVIDER

Fig. 5. Step-by-step illustration of SAP with cross sections.

C. Fabrication Process

The fabrication process utilizes the SAP process to pattern
the copper structures, which has been proven superior to the
conventional etching process as it provides control over the
profile of deposited copper [27]–[31]. Fig. 5 shows the SAP
process through schematic cross sections of each step. The
process starts with a bare glass panel in which TGVs are
drilled by AGC. The glass panel is then treated with silane
to promote adhesion to the polymer film, and the film is
laminated on the glass panel, followed by curing. Polymer
lamination provides better glass handling through the rest
of the process and behaves as an intermediate CTE buffer
between glass and copper. Next, vias are ablated in the poly-
mer to have through panel vias (TPV) by optimizing the via
ablation conditions on a UV laser. A 200-nm-thick copper seed
layer is deposited on the panel using a wet deposition process
followed by lamination of dry-film negative photoresist.

Optimizing steps of SAP with experiments during fabrica-
tion is critical to obtain the desired line space dimensions. For
example, desired spacing between two arms of the balun of
Yagi–Uda antenna element is 40 μm. Dimensional checks are
performed after the critical process to ensure tight tolerance.
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Fig. 6. Result of optimization of SAP process. Desired spacing: 40 μm.
Measured: 39.6 μm.

Fig. 7. Fabricated coupons of Yagi–Uda antenna arrays. (a) 2× 1. (b) 3 × 1.
(c) 4 × 1.

As evident from Fig. 6, the measured spacing between the
two arms of the balun is 39.6 μm after photolithography,
photoresist development, and electrolytic plating steps. After-
ward, photoresist is stripped and the seed layer is etched to
obtain the desired pattern. The measured copper thickness is
8.5 ± 0.5 μm. The fabricated antenna arrays are shown
in Fig. 7.

III. CHARACTERIZATION RESULTS AND ANALYSIS

This section discusses the characterization results of the
fabricated power dividers and corresponding antenna arrays.
The return loss measurements are performed using an Anritsu
vector network analyzer (VNA) in the frequency range of
20–32 GHz using ACP50 GSG probes and short-open-load-
through (SOLT) calibration. For the radiation pattern measure-
ments, 2.92-mm edge-mount connectors are soldered onto the
coupons, as shown in Fig. 8. The radiation pattern measure-
ment setup consists of a two-port VNA, two known antennas,
and antenna under test (AUT). After characterizing path loss
using two known antennas, one of them is replaced with AUT
and its gain and radiation pattern are measured. The measure-
ments are performed on four, three, and two coupons of 2×1,
3×1, and 4×1 antenna arrays, respectively. The measurement
results are compared with the simulation results to perform a

Fig. 8. Fabricated power dividers and corresponding antenna arrays (right-
to-left): 2×1, 3×1, and 4×1 with soldered 2.92-mm connectors for radiation
pattern measurements.

Fig. 9. S-parameters. (a) Two-way power divider. (b) 2×1 Yagi–Uda antenna
array.

model-to-hardware correlation. Also, a dimensional analysis
performed to correlate fabricated and desired dimensions and
obtain electrical dimensions in terms of free-space wavelength
corresponding to the center frequency of 5G NR n257 and
n258 bands.

A. Two-, Three-, and Four-Way Power Dividers

The S-parameters of two-, three-, and four-way power
dividers are shown in Figs. 9(a), 10(a), and 11(a), respectively.
The two-way power divider has a maximum insertion loss
of 3.41 dB, the three-way power divider has a maximum
insertion loss of 5.37 dB, and the four-way power divider has a
maximum insertion loss of 6.88 dB. Compared with the ideal
insertion loss of these power dividers, the added insertion loss
is 0.4 dB for two-way power divider, 0.6 dB for three-way
power divider, and 0.86 dB for four-way power divider. The
in-band VSWR is less than 1.92 for the demonstrated power
dividers.
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Fig. 10. S-parameters. (a) Three-way power divider. (b) 3 × 1 Yagi–Uda
antenna array.

Fig. 11. S-parameters. (a) Four-way power divider. (b) 4 × 1 Yagi–Uda
antenna array.

B. 2 × 1, 3 × 1, and 4 × 1 Yagi–Uda Antenna Arrays

The comparison of measured return loss of multiple coupons
of 2 × 1, 3 × 1, and 4 × 1 Yagi–Uda antenna arrays with the
simulation is shown in Figs. 9(b), 10(b), and 11(b), respec-
tively. As evident from these figures, an excellent correlation is

TABLE II

REALIZED GAIN AND EFFICIENCY OF
DEMONSTRATED ANTENNA ARRAYS

Fig. 12. Normalized measured radiation pattern of Yagi–Uda antenna arrays
at 27 GHz compared with simulation (dashed line: simulated and solid line:
measured). (a) 2 × 1. (b) 3 × 1. (c) 4 × 1.

TABLE III

PHYSICAL AND ELECTRICAL DIMENSIONS OF DEMONSTRATED
POWER DIVIDERS AND ANTENNA ARRAYS

observed between the simulated and measured results, as well
as between coupons of the same antenna arrays.

The model-to-hardware correlation of two-, three-, and
four-way power dividers and corresponding antenna arrays is
excellent as depicted in the figures. The discrepancies can be
attributed to many factors in simulation, fabrication, and char-
acterization [32]. For 4×1 antenna array, a postcharacterization
simulation is performed to correlate model with hardware and
understand the variation between simulation-1 and measured
return loss. Mainly, the dimensions of critical features, such as
gap in balun and dimensions of matching sections for all three
two-way power dividers in a 4×1 antenna array are measured
using an optical profilometer and these data are used to run
a simulation in HFSS. As a result, simulation-2 captures the
effects of small dimensional variations for 4×1 antenna array
and correlates better with hardware compared with simulation-
1, as shown in Fig. 11(b). The realized gain and efficiency
of these antenna array structures are given in Table II. Their
normalized radiation patterns are measured at 27 GHz and
compared with simulation in Fig. 12. It is to be noted that the
realized gain of a Yagi–Uda antenna element is 4 dBi in the
24.25–29.50-GHz frequency range.
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TABLE IV

COMPARISON WITH SIMILAR POWER DIVIDERS

Fig. 13. Wideband S-parameters of two-way power divider.

C. Dimensional Analysis

The physical and electrical dimensions of power dividers
are given in Table III. The physical dimensions are nor-
malized with free-space wavelength (λ0) corresponding to
the center frequency ( f c) of 28-GHz 5G bands. The f c

of 24.25–29.50-GHz range is 26.875 GHz and the correspond-
ing λ0 is 11.16 mm. A comparison of dimensions of the
demonstrated power dividers with the recent prior art is given
in Table IV, in which electrical dimensions are calculated
by normalizing physical dimensions by λ0 corresponding to
the band frequency. It can be observed that the demonstrated
two- and three-way power dividers are smaller than unit
λ0

2. In addition, the four-way power divider has a footprint
of 1.64λ0

2. All of the fabricated structures have a z-height
of 147 μm. Since the power dividers are designed to be
configured as antenna arrays, their footprint is governed by
the physical spacing between the adjacent antenna elements.
However, the footprint can be further reduced depending upon
the application.

Leading-edge, thin-film, coplanar waveguide (CPW)-based
ultrawideband two-way power divider is reported by TSMC
on integrated fan-out (InFO) RDL [18]. This power divider
depicts an insertion loss of −4.3 dB. The two-way power
divider reported in this article is simulated from 14 to 40 GHz
to check its wideband response. It has a −10-dB return loss
FBW of 81% as shown in Fig. 13, although it was only utilized
for 24.25–29.50-GHz range. Moreover, it depicts an insertion
loss of −3.41 dB, which is 25% less than the power divider
reported in [18]. The low added insertion loss of these power
dividers can be advantageous in several component, package-
and module-level applications.

IV. CONCLUSION

Package-integrated and ultrathin power dividers with foot-
print smaller than the unit free-space wavelength are presented
for 28-GHz 5G NR n257 and n258 bands. Their design, fab-
rication, characterization, and analysis are discussed in detail.
SAP process is optimized for the fabrication of these power-
dividing structures on an ultrathin stack-up with glass substrate
as a core. Moreover, the power dividers are configured as
Yagi–Uda antenna arrays with up to four elements using
minimal matching techniques to demonstrate the efficacy of
this simple design. The characterization of power dividers
and corresponding antenna arrays shows that they exhibit
low added insertion loss and minimal phase shift between
the output ports. An excellent agreement between the sim-
ulated and measured responses of antenna arrays is observed.
The superior electrical properties of the demonstrated power
dividers and antenna arrays, in combination with their small
footprint, make them an ideal candidate for strict-footprint 5G
and mm-wave modules.
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