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Abstract—1In this article, the implementation of a machine
learning (ML) strategy based on neural networks for the real-time
range-adaptive automatic impedance matching of wireless power
transfer (WPT) applications is discussed. This approach for the
effective prediction of the optimal parameters of the tunable
matching network and the selection of range-adaptive transmitter
coils (Tx) is introduced in this article, aiming to achieve an effec-
tive automatic impedance matching over a wide range of relative
distances. We propose a WPT system consisting of a tunable
matching circuit and three Tx coils that have different radii
and are simultaneously controlled by trained neural network
models, returning an output set of matching capacitances as well
as the optimal single transmitter among the three transmitters.
In addition, a proof-of-concept prototype of the entire real-time
range-adaptive automatic impedance-matching system is built
and characterized. Finally, the proposed approach achieves a
power transfer efficiency (PTE) of around 90% for ranges within
10-25 cm.

Index Terms— Automatic impedance matching, machine
learning (ML), neural network, resonant coupling, wireless
power transfer (WPT).

I. INTRODUCTION

HE real-time impedance matching of wireless power

transfer (WPT) systems using magnetic resonance cou-
pling (MRC) has become a critical challenge in order to
maintain a reasonable power transfer efficiency (PTE) for
time-varying configurations. Various MRC system architec-
tures are used in the near-field WPT, which can facilitate the
impedance matching to optimize the system transfer charac-
teristics. At this point, the frequency-splitting phenomenon is
a key issue that typically happens in multi-coil systems, such
as multi-relay coils, multi-transmitter coils, and multi-receiver
coils, related to the PTE and capability of the WPT system.
In other words, there will be an impedance mismatch between
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the resonator impedance and the load impedance by changing
the distance, changing the orientation, or introducing any
generic misalignment. To overcome this issue, the adaptive
frequency tracking [1], [2] approach has been used, which
can achieve maximum power delivery, but only operating
in a wide bandwidth that is typically outside the narrow
industrial, scientific, and medical regulated bands. As the
importance of robustness against distance variation in WPT
systems becomes greater, Duong and Lee [3] and Lee et al. [4]
proposed an impedance-matching technique by changing the
distance between multiple coils physically. By adjusting the
relative distances or angles between adjacent coils based on
the optimal coupling factor between the source and the inter-
nal resonator [3], a high-efficiency WPT system is achieved
without any lossy matching network. This adaptive system [4]
with the reconfigurable resonant coil configuration consists of
a series of subcoils that use switches to control the number
of turned-on subcoils increasing the efficient transfer range.
Similarly, an analytic design method for impedance-matched
WPT systems using an arbitrary number of coils by applying
flexible coil positioning has been proposed in [5]. Moreover,
Qiu et al. [6] recently proposed digital programmable trans-
mitter coils to maximize the system efficiency in the WPT
systems when a receiver coil is given. In [7] and [8], a tunable
matching circuit was designed for a range-adaptive WPT sys-
tem with switching capacitors to obtain wide tunability from
the impedance-matching circuit. When the input impedance of
a WPT system changes with the distance, a tunable matching
circuit can be used to match the variable impedance with the
distance. The L-type or inverted L-type matching network in
the transmitter side is used in [7], and the z-type network
in both transmitter and receiver sides is used in [8] with
different numbers of relays, inductors, and capacitors for
switching. In addition, a range-adaptive WPT system utilizing
the multi-loop topology uses a tunable matching network
composed of varactors in [9]. In a previously reported work,
Bito et al. [10] utilized the genetic algorithm (GA) to optimize
the matching circuit design over a wide range of impedances
to match, and therefore, WPT efficiency is potentially high.
Recently, an automatic impedance-matching technique based
on the feedforward-backpropagation (BP) neural network has
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Fig. 1. Simplified schematic of the automatic matching circuit.

been proposed [11] to maintain a PTE at a reasonable level.
However, these previously reported systems are limited in the
effective ranges of impedances because of their typically unex-
pected variations of the transfer distance or load impedance.
Here, we propose an alternative approach that takes advantage
of a novel method based on a feedforward neural network
combined with pattern recognition techniques, thus addressing
the shortcomings of the aforementioned impedance-matching
approaches while retaining high PTE. As a proof of concept,
one receiver coil, three selective transmitter coils, and a
matching circuit with tunable capacitors are first designed and
measured. Then, a machine learning (ML) approach utilizing
neural network algorithms that can construct the mapping
relationship is presented to improve the power transfer capa-
bility of the WPT system. Furthermore, the implementation of
an entire real-time range-adaptive impedance-matching circuit
and its verification are discussed in detail as an extension of
previously reported results [12].

II. WPT APPLICATION
A. Matching Circuit Design and Fabrication

A matching circuit topology consisting of three consecutive
L-type series inductors and shunt capacitors with a p-i-n
diode switch was used in [10]. The simplified schematic
of this matching circuit is shown in Fig. 1. To overcome
the limited capability of this static topology to provide an
acceptable PTE over a wide range of transmitter—receiver
distances, one variable capacitor from Murata electronics is
employed in this article enabling superior characteristic of the
matching circuit compared with previous work and allowing
for the on-demand value tuning utilizing the results from the
proposed ML approach. These tunable capacitors typically
achieve capacitance values that can vary by applying voltage to
their electrodes in the range of 100-200 pF (0-5 V) for Cvar.1
and Cvar.2, and 30-60 pF (0-3 V) for Cvar.3 and operate
appropriately at 13.56 MHz with the limited range of values.
To determine the optimal matching circuit topology with those
tunable capacitors, the impedance-matching coverage of multi-
ple topologies, and a 7 -type and an L-type of multiple sections
(one to three consecutive stages) with each section comprising
of a series inductor, a shunt capacitor, and a switch were sim-
ulated with respective matching impedance coverage ranges
shown in Fig. 2, as the verification of the impedance-matching
coverage for a variability of the used capacitance values
of Cvar.1 (100-200 pF), Cvar.2 (100-200 pF), and Cvar.3
(30-60 pF) in steps of 10 pF. In addition, the reason for using
10-pF steps of the capacitance values is to satisfy the prac-
tical control module constraints in a system implementation.

5341

3

o ——
%000
e

2

L1 <

Cvar.1|Cvar.2|

(©) )

Fig. 2. (a) Simulated input impedance values of z-type matching circuit
with Cvar.1 and Cvar.2. (b) Simulated input impedance values of one L-type
matching circuit with Cvar.l. (c) Simulated input impedance values of
two L-type matching circuits with Cvar.l and Cvar.2. (d) Simulated input
impedance values of three L-type matching circuits with Cvar.1, Cvar.2, and
Cvar.3.

Since the power transfer to the load can be maximized when
the input impedance of the matching circuit looking from
port.2 (Zy) in Fig. 1 is the complex conjugate of the Rx—Tx
coil topology impedance input (Z.), each fixed inductor value
of L1, L2, and L3, and the use of the capacitor among
Cvar.1, Cvar.2, and Cvar.3 were first optimized to minimize
the reflection coefficient I' = (Z} — Z22)/(Z} + Z»;) from the
simulated coil configuration (Rx-Tx1, Rx-Tx2, and Rx-Tx3)
impedance value (Z.) distances at 10, 15, and 20 cm. The
three consecutive-stage L-type topology was chosen to provide
wide impedance-matching coverage and satisfy the practical
constraints such as the loss associated with the lumped circuit
components. With this proposed method, a wide range of
impedance coverage can be realized though the variation
in the input impedance Z;j,. For the inductance values of
L1, L2, and L3, the fixed inductor values of 1432, 610,
and 1484 nH were optimized corresponding to the values of
capacitance’s tunable ranges in simulations utilizing advanced
design system (ADS) 2016. For the fabrication of a proof-
of-concept prototype of the matching circuit, a 1.5-mm-thick
substrate from RO4003C provided by the Rogers Cooperation
and the inductors with fixed values of 1500 and 560 nH
provided by the Coilcraft 0603HL series were used.

B. Receiver and Selective Transmitters Configurations

Both receiver and transmitter coils are open-type helical
coils that have a self-resonance frequency of 13.56 MHz. For
the proof-of-concept purpose, each coil was designed with
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Fig. 3. Simulated reflection coefficient (S11) with respect to Rx—Tx distances.

TABLE I

PARAMETERS OF THE RX AND TX COILS FOR THE
PROPOSED WPT SYSTEM

‘ Receiver ‘ Transmitters
Rx ‘ Tx1 ‘ Tx2 ‘ Tx3
Self-resonance Frequency (MHz) 13.56
Copper Wire Radius (mm) 0.5
Radius (cm) 5 10 15 20
Number of turns 27 10 6 4.5
Pitch (mm) 2

fixed radius values (r = 5 cm for the receiver, and 10, 15,
and 20 cm for the transmitter coils) to resonate at the same
frequency by optimizing the number of turns and the intercoil
distance as derived using CST Studio 2016 using the integral
solver. A multi-coil transmitter topology was employed to
reduce the variation in the input impedance of the WPT system
with respect to the distance. To maximize the coil-to-coil
efficiency, it was found that the optimal radius of Tx should
be approximately equal to the distance of coil-to-coil in [6]
according to the following analytically derived equation:

rx =d ey

when g, < rrx. Based on a detailed design analysis, the over-
all geometrical design for the Rx and Tx coils is controlled
by the key parameters summarized in Table I. To improve
the robustness of both the Tx and Rx coil structures, laser
cut acrylic boards were use as support fixtures. The extracted
S-parameters from the simulations will serve a standard data
set for the neural network training presented in Section III-B.
A photograph of the fabricated Rx and Tx three-coil prototypes
is shown in Fig. 4. Each switch introduces a selectivity of
a specific transmitter coil by utilizing a relay, TQ2-L2-4.5V
from Panasonic Electric works, featuring a resistance lower
than 50 mQ in the “ON’ state. To confirm the effectiveness
of this approach, the reflection coefficient (S11) values were
simulated according to the coil-to-coil (Rx-Tx1, Rx-Tx2, and
Rx-Tx3) distance at 10-25 cm, as shown in Fig. 3, and 10 cm
was the minimum possible center-to-center separation distance
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Fig. 4. (a) Fabricated Rx coil. (b) Fabricated 3-coil Tx with switches.

between the Rx-Tx coils, since the thickness of the sup-
port fixtures is 10 cm for Rx and 8 cm for Tx coils.
The multi transmitter coil topology can be effectively used
in the range-adaptive WPT system in addition to the use of
the proposed tunable matching circuit.

III. ML APPROACHI

Neural networks represent powerful ML-based techniques,
inspired by the neurons in the human brain, that are designed
to recognize patterns or underlying relationships in a set of
data. Their networks have turned out to be well suited to
modeling high-level abstractions across a wide array of disci-
plines and industries. The MATLAB neural network toolbox
was used to implement suitable neural networks with optimal
structure parameters.

A. Optimize the Hyperparameters of the Neural Network

In ML, the hyperparameters are the variables that determine
the network structures and the method by which the network is
trained. Neural networks can have many hyperparameters that
are usually set before the training process, such as the number
of hidden layers, the number of epochs, and the training
function. Hidden layers are the layers between the input layer
and the output layer, where artificial neurons take in a set of
weighted inputs and produce an output through an activation
function. It is a typical part of nearly any neural network in
which engineers emulate the types of activity that go on in the
human brain. While stacking many hidden layers allows us to
learn more complex relationships in the data, this approach
is also more prone to potentially overfitting data. In addition,
a validation data set is a data set of the samples used to provide
an unbiased evaluation of a model fit on the training data set
while tuning model hyperparameters. The difference between
the validation data set and the test data set is generally what is
used to evaluate competing models. The validation data set is
used to compare their performances, whereas the test data set
is used to provide an unbiased evaluation of a final model fit
on the training data set. Here, we calculated the mean square
error (MSE) by the following equation:

1 n
MSE = =3 (i = (7))’ @)
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where the desired neural network output is denoted by y; and
the neural network output is denoted by y; to compare the per-
formance of the trained network for the following variations of
two different hyperparameters: 1) the number of hidden layers
and 2) the three training functions (the Levenberg—Marquardt,
Bayesian regularization, and Scaled conjugate gradient). The
number of epochs is also one of the hyperparameters of
gradient descent that controls the number of complete passes
through the training data set. In other words, an epoch is
one learning cycle where the learner sees the whole training
data set. A sufficient number of epochs (1000) were used
along with each network to guarantee the minimization of
the training MSE. Fig. 5(a) shows the calculated MSE of the
validation data corresponding to the number of hidden layers
and Fig. 5(b) shows the MSE of the test data corresponding
to the number of hidden layers from 5 to 15. In Fig. 5(b),
MSE with the Bayesian regularization function is always zero
because of the function that performs Bayesian regularization
BP, which disables the validation stops by default. In other
words, this function does not require a validation data set at
the point of checking validation to see if the error on the
validation set gets better or worse as training goes on. Since
the value of the MSE is good when it is close to 0, the number
of hidden layers used for the neural network should be ten
for this application when using the Levenberg—Marquardt
and Bayesian regularization functions. Throughout this article,
we used the following data partitioning methods that have been
suggested in most of the related articles: 70% of the entire data
set for training, 15% of the entire data set for validation, and
15% of the entire data set for testing.

B. Feedforward Neural Network With Backpropagation

The feedforward neural network also called deep feedfor-
ward network is one of the deep learning models. To approx-
imate some function f(x) through the feedforward neural
network, when x is the input, the feedforward neural network
defines a mapping function y = f(x; #) and determines the
parameters €, which gives the best function approximation
results [13]. Moreover, the BP method provides a neural
network with a set of input values for which the correct output
value is known beforehand. In this network, as shown in Fig. 6,
the information moves in both directions from the input layers
with an associated weight factor (w) to the output layers, while
the hidden layers are usually used for improving mapping
ability. In this work, we propose a WPT scheme with a three
cascading L-type stage impedance-matching network based on
a feedforward neural network, which is a similar approach
used in [11]. They developed a mapping relationship between
the impedance of the equivalent load (Zeq = Req + jXeq)
and the matched capacitor set composed of (Cy, C3) in their
I'-type of matching network. In this work, in consideration of
each switch connected to each L-type stage of the matching
network, the final output set is composed of (Cip, Ca, C3).
The data set for training to produce a function describing the
network consists of the distribution of |S11| values when using
the matching network to match impedances within the range of
0 to 20 Q for Req and —50 to 50 for Xeq with 1-Q interval in
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Fig. 5. (a) MSE of the test data. (b) MSE of the validation data.
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Fig. 6. Schematic of the feedforward neural network with BP.

total with a set of 2121 data. The reason to use these dynamic
variation ranges of the impedance is based on the consideration
of matching the range from small to large impedance variations
in real time. In a previously reported work, we proposed the
advanced approach using a shallow neural network to classify
patterns. Through classification, an automated system declares
that the input object belongs to a particular category. A set
of 2121 values of the output parameters, which represents
the capacitances’ values, (C1, Cp, C3) from the above trained
model acts as the input to select the proper “optimal” single
transmitter coil among Ty, T2, and Ty3. After that, the trained
classifier can recognize the three categories associated with
each set of input parameters. In this work, the selection of
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the proper transmitter coils among Ty, Ty2, and T3 is also
included in the output parameter set in consideration of further
implementation.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION
A. Implementation of the Proposed System

Firstly, the trained feedforward neural network model is
built by the process discussed in Sections III-A and III-B.
To predict the capacitance values and classify the type of the
transmitter, a training process using the feedforward neural
network was implemented. We implemented the trained neural
network by extracting layer/output weight factors from the
MATLAB simulation as the development of the network on
Arduino would be the slower process in terms of training
time. Before matching, the initial input impedance of Rx—Tx
at 13.56 MHz was measured by a vector network analyzer
and shown in Fig. 8. To verify the fabricated three transmitter
coil prototypes and the effect of their selective operability,
Fig. 8 also shows the measurement results when one of three
transmitter coils was manually selected to achieve impedance
matching only utilizing the proposed matching circuit depend-
ing on each coil-to-coil distance. From these figures, it can be
easily deduced that the classified output parameters, capaci-
tance values (C1, C, C3), is not accurate at certain impedance
values, because the trained neural network model assumed
strong underlying relationship between those impedances and
other transmitter coils. This can be the reason why the Si;
is high at 15 cm in Fig. 8(a) and at 14 cm in Fig. 8(c),
and can be prevented by using selective multi transmitters.
As discussed in [6], the coil’s matching is improved throughout
most of the coil-to-coil distance ranges such as of Rx-Tx1 at
10-14 cm, Rx-Tx2 at 15-19 cm, and Rx-Tx3 at 20-25 cm.
Finally, by combining the selective multi transmitters that
are controlled automatically, the performance of the proposed
approach will be discussed in Section I'V-B.

B. Operation Test and Performance Evaluation

To verify the prediction capability for each set of capaci-
tance values of the impedance-matching circuit and the coil
selection capability for multicoil transmitters, the performance
of the entire real-time range-adaptive matching system was
tested and the configuration is shown in Fig. 7. Initially,

Block diagram of the proposed real-time range-adaptive impedance-matching WPT system.

the S1; signal was measured by utilizing a directional coupler,
ZEDC-15-2B from Mini-Circuits and the RF detector IC,
LTC5507 from the Linear Technology Cooperation. Then,
the output dc voltage was measured by utilizing an analog-
to-digital (ADC) converter in the microcontroller module
not only to calculate the matched capacitor set but also to
predict the “optimum” transmitter coil through the neural
network. Finally, the Arduino processor outputs the pulsewidth
modulation (PWM) signal to drive the voltage that adjusted
the capacitance values and controlled the three switches’
status in the transmitter selection. To verify the validity of
the proposed WPT system, the received power at different
separation distances was first measured by using a real-time
spectrum analyzer, RSA3408 from Tektronix, Inc., with a tun-
able matching circuit and multiple Tx coils. The S-parameters
of the matched state automatically chosen by the trained
neural network model at different coil separation distances
were measured by utilizing a vector network analyzer, and
the extracted values of S; were used to calculate the PTE
expressed in the following equation:

PTE = | S5 1% x 100(%). 3)

To verify and validate the proposed approach, Fig. 10 shows
the calculated values of PTE at each distance within the
range of 10-25 cm comparing the performance when using
only one specific Tx coil and with selective Tx coils under
the condition of the similar matching approach in [6]. After
matching through the trained neural network model, it can be
easily seen that the input impedance matching is improved
over the entire separation distance range. By utilizing the
selective Tx coils, the PTE was more stable and able to avoid
the sudden drop at certain distance ranges for two different
environments [the capacitance values and the selected single
transmitter coil extracted from the trained neural network
model based on the simulation results combined with the man-
ually measured result of the tunable matching circuit, and the
multi transmitter coils, respectively (Case 1) and automatically
measured results of the entire real-time range adaptive system
(Case 2)]. Especially, at distances 12, 13, 14, 16, 18, 19,
and 22 cm, the capacitance values and the selected single
transmitter coil extracted from the trained neural network
model result in a significant improvement, as clearly shown
in Fig. 9. Moreover, the proposed approach achieves a PTE
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of around 90% over the distance range within 10-25 cm.
In angular coil misalignment environment, the plane of the
Tx coil is tilted to form an angle in —30° and 30° along ¢
angle at 10, 15, and 20 cm, as shown in Fig. 7, and the system
input impedance matching is improved, as shown in the Smith
chart in Fig. 11. It can be easily seen that the matching results
by the proposed method even in angular coil misalignment
environment are concentrated at the center of the Smith chart,
which is close to target impedance 50 Q.
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To identify the performance of the range-adaptive
impedance-matching system and show the limitation of exist-
ing techniques, a comparison table is shown in Table II. Com-
pared with the previous work utilizing GA [10], the significant
improvement in the operation range while retaining high PTE
was confirmed, with a smaller number of stages resulting in a
reduced loss associated with the lumped circuit. Compared
with the WPT system configuration in [9] that employed
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TABLE 1I
COMPARISON OF REPORTED RANGE-ADAPTIVE WPT SYSTEMS
1Sl mezilsuremerl.t TxRx Type of matching circuit Tuning method Algorithm type/speed Operation range(cm)
for automatic matching structure over 80% of PTE
7] Directionzfll coupler Two L-type network in Tx ‘ Belays A ADecent- search 921
rectifier resonators (Switching capacitors) with scaling,<1.5s
[8] Rectifiers Four . m-type network Switching capacitors ?aras1tlc and 10-22
resonators in both Tx and Rx conjugate match, -
9] Directional coupler Four resonator Shunt network Relays (Switching capacitors) | Searching algorithm, 10-40
rectifier resonators in both Tx and Rx varactors, multi-loop <1.2s
[10] Directional coupler Two Cascading 6 L-type p-i-n diodes Genetic algorithm, 10-16
RF detector IC resonators network in Tx (Switching capacitors) <0.064s
(1] Directional coupler Four I'-type Stepper motors Neural network, 0-20
RF detector IC resonators network in Tx for capacitors <0.063s
This Directional coupler Two Cascading 3 L-type Tunable capacitors Neural network, 10-25
work RF detector IC resonators network in Tx p-i-n diodes, multi-coil Tx <0.063s
T Before matching O Bofore matching here could greatly enhance the state-of-the-art real-time range-
X_After matching adaptive automatic impedance-matching techniques in the
WPT system.
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