
research article

Spiral resonators for optimally efficient
strongly coupled magnetic resonant systems
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The wireless efficiency of the strongly coupled magnetic resonance (SCMR) method greatly depends on the Q-factors of the TX
and RX resonators, which in turn are strongly dependent on the geometrical parameters of the resonators. This paper ana-
lytically derives the equations that can be used to design optimal spiral resonators for SCMR systems. In addition, our analysis
illustrates that under certain conditions globally maximum efficiency can be achieved.
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I . I N T R O D U C T I O N

Many wireless power transfer (WPT) methods have been sug-
gested and examined in the past for various practical applications.
In fact, WPT has been achieved using near-field coupling in
various applications such as Radio Frequency Identification
(RFID) tags, telemetry, and implanted medical devices (IMD)
[1, 2]. In addition, certain inductive coupling techniques have
been reported to show high power transfer efficiencies (of the
order of 90%) for very short distances (1–3 cm) [3]. However,
the efficiency of such techniques drops drastically for longer dis-
tance since it decays as 1/r6 [4, 5].

This paper focuses on the optimal design of spiral resonators
that maximize the efficiency of strongly coupled magnetic reson-
ance (SCMR) systems. The SCMR method is a non-radiative
wireless mid-range power transfer method (10–300 cm) that
has been recently developed [6–10]. Recent work has also
shown that SCMR provides WPT efficiencies that are significantly
greater than the efficiencies of traditional inductive coupling
methods [6, 7, 11]. In order for SCMR to achieve high efficiency,
the TX and RX elements (typically loops or coils) are designed
to resonate at the desired operational frequency, which must
coincide with the frequency at which the elements exhibit
maximum Q-factor. This paper analytically derives the conditions
that must be satisfied by the geometrical parameters of spiral reso-
nators in order for SCMR systems to achieve optimal efficiency.

I I . W P T W I T H S C M R

SCMR systems use resonant transmitters and receivers that
are strongly coupled. Strongly coupled systems are able to

transfer energy efficiently, because resonant objects exchange
energy efficiently versus non-resonant objects that only inter-
act weakly [7]. A standard SCMR system consists of four ele-
ments (typically four loops, or two loops and two coils). Here,
an SCMR system based on spirals is shown in Fig. 1. The
source element is connected to the power source, and it is
inductively coupled to the TX element. The TX element
must exhibit a natural resonance frequency that is identical
to the RX. Both elements should be resonant at the frequency,
where their Q-factor is naturally maximum. Furthermore, the
load element is terminated with a load. For our analysis, we
assume that the entire system operates in air.

I I I . O P T I M A L S C M R B A S E D O N
S P I R A L S T R U C T U R E S

In this section, we will develop the guidelines for designing
optimal SCMR systems that use spiral TX and RX resonators.
The TX and RX resonators shown in Fig. 1 can be equivalently
represented by an Resistor Inductor Capacitor (RLC) circuit
shown in Fig. 2. Helices and spirals are often preferred as

Fig. 1. Schematic representation of an SCMR system with spirals in the air,
where KS, KTX_RX, and Kd are the respective coupling coefficients.
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SCMR TX and RX resonators as they exhibit both distributed
inductance and capacitance thereby requiring no external
capacitors to tune to the self-resonance frequency. Also, exter-
nal capacitors have losses, which in practice can reduce the
Q-factor of the TX and RX elements and in turn decrease
the efficiency of SCMR systems.

Figure 2 shows a square spiral with a rectangular cross-
section. The basic dimensional parameters of such spiral are
N, W, S, T, and dout, which are the number of turns, cross-
sectional width, spacing between turns, thickness of the
trace material, and the outermost side length of the spiral,
respectively, are used for the analysis of the SCMR system
(Fig. 3).

The inner diameter, din, is derived from the other para-
meters as:

din = dout − 2 NK − S[ ], (1)

where K ¼W + S is the distance between the centers of two
adjacent turns. The total length ℓtot of the spiral can be calcu-
lated as:

ℓtot = 4N dout − K N − 1( )[ ]. (2)

The resonance frequency of the spiral fr can be calculated
from [4]:

fr =
1

2p
����
LC

√ . (3)

The resonant frequency fr is also the operational frequency
for the SCMR wireless powering system. The Q-factor at the
resonance frequency can be written as [12]:

Q = 2pfrL
Rohm + Rrad

, (4)

where L, Rohm, and Rrad are the self-inductance, ohmic resist-
ance and radiation resistance of the spiral. The inductance L of
a spiral can be written as [13]:

L =
moN2 din + dout
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where c1 ¼ 1.27, c2 ¼ 2.07, c3 ¼ 0.18, and c4 ¼ 0.13, are the
constants derived based on the geometrical layout of the
square spiral; and a is the fill ratio defined by a ¼ (din 2

dout)/(din + dout). The ohmic and radiation resistances can
be written as [4, 13]:

Rohm = ℓtot

4
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WT

√
��������
pmorf

√
1 + Rp

Ro

( )
, (6)
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where, di is the side length of the ith turn of spiral, r is the
spiral’s conductor resistivity, c is the speed of light, and��������
pmorf

√
represents the conductor’s sheet resistance [4].

The factor Rp/Ro in (6) represents the proximity effect factor
that accounts for the additional resistance due to closeness
of the conductors. The proximity factor depends on W, S,
and N and adds additional resistance that is undesirable as
it reduces the Q-factor. Hence, the spiral dimensions have to
be chosen carefully to maximize the Q-factor. Specifically,
the proximity factor can be significantly reduced by increasing
the spacing between turns, S, and decreasing the width, W,
(S . 10W ) [14]. In order to derive analytical expressions
for Qmax and fmax, the analytical and simulation setups are
chosen such that the proximity effect is negligible reducing
(6) to:

Rohm = ℓtot

4
�����
WT

√
��������
pmorf

√
. (8)

It should also be noted that (4)–(8) are effective in SCMR
analysis only when ℓtot , l/3 [4]. The Q-factor of a resonant
spiral can be expressed in terms of its geometrical parameters
using (4), (5), (7), and (8) as:

Q =
pfrmoN2 din + dout
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The maximum possible Q-factor Qmax of a spiral and the
frequency fmax, where Qmax occurs, can be derived from (9)
using standard calculus as:

fmax = 120.44 × 106 ℓtot
�����
mor

√�����
WT

√ ∑N
i=1 d2

i

( )2

[ ]2/7

. (10)

Fig. 2. RLC representation of a spiral.

Fig. 3. The spiral model geometry.
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Qmax =
pfmaxmoN2 din + dout

2

( )
c1 ln

c2

a

( )
+ c3a+ c4a

2
[ ]

ℓtot

4
�����
WT

√
�����������
pmorfmax

√
+ 31200

fmax

c

( )4 ∑N

i=1

d2
i

( )2 .

(11)

Equations (10) and (11) were derived assuming the prox-
imity effect is negligible; therefore, they are valid only when
S ≥ 10W. A similar work was done in [15] with spirals for res-
onant inductive coupling and not SCMR, in which the prox-
imity and radiation resistance are ignored.

SCMR requires that each of the TX and RX spiral elements
exhibit maximum Q-factor at a frequency fmax ¼ fr, in order to
achieve maximum power transfer efficiency (i.e. fr ¼ fmax).
This condition may not be naturally satisfied. This
means that if we use (10) to design an SCMR system with
spirals that have a certain fmax that does not necessarily
mean that the spirals will also resonate at fmax. If fr and fmax

happens to be different that would mean that the spirals are
not resonating at the maximum Q-factor frequency thereby
reducing the efficiency of the SCMR system. In what
follows, we examine under which conditions fr and fmax of a
spiral are equal. This cannot be done analytically, i.e. solving
system of equations (3) and (10) assuming fr ¼ fmax, as
there are no adequately accurate analytical formulas for the
capacitance of a spiral. Therefore, we perform numerical ana-
lysis High Frequency Structure Simulator (HFSS). We used
circuit parameter extraction to calculate the L, C, and R of
the equivalent circuit of a spiral versus frequency using
Ansoft Designer/HFSS thereby allowing us to calculate and
compare fr and fmax. Figure 4 plots the fr and fmax of a spiral
with parameters W ¼ 2 mm, S ¼ 2 mm, T ¼ 2 mm, and
dout ¼ 50 mm versus the number of turns. Figure 4 illustrates
that as the number of turns of the spiral increases, fr converges
to fmax. This happens because: (1) fmax does not change signifi-
cantly for varying N, and (2) the inductance, L, and capaci-
tance, C, of a spiral increase when N increases as fr

decreases according to (3). An extensive simulation study
was conducted for several combinations of spiral dimensions
within the range of dout ¼ 50 to 100 mm. Our results show
that fr ≈ fmax within a tolerance of 5% when the following
conditions are satisfied:

K ≤ 0.1 dout , (12)

N = Nmax = dout

2K
. (13)

Table 1 shows a sample of our results for spirals with geo-
metrical parameters dout, N, K, W, and T that satisfy condi-
tions (12) and (13). The rightmost column shows the
difference between fr and fmax that is less than 4% for all cases.

Next we examine, if the Q-factor of a spiral has also a global
maximum, QGmax, with respect to W. The proximity effect was
considered because of its effect on changing width and
spacing. By including the factor Rp/Ro, (11) can be written as:
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The standard calculus cannot be used to derive the global
maximum analytically due to the complexity of (14).
Nevertheless, QGmax can be calculated numerically by plotting
Qmax using (14) and observing if a global maximum exists. For
example, a spiral with parameters N ¼ 5, K ¼W + S ¼
10.2 mm, T ¼ 0.5 mm, and dout ¼ 100 mm is examined. The
maximum Q-factor Qmax is calculated analytically using (14)
for W varying from 0.2 to 9 mm while keeping the distance
between the centers of adjacent turns (K) of the spiral con-
stant at 10.2 mm. Figure 5 shows the plots of Qmax versus
W and compares the analytical calculations with simulations.
Figure 5 also illustrates clearly that a global QGmax occurs at
W ¼ 3.6 mm, in both the analytical and simulation results.
This indicates that the spiral designed with a width of
3.6 mm will be globally optimum and have maximum effi-
ciency for: N ¼ 5, T ¼ 0.5 mm and dout ¼ 100 mm and K ¼
10.2 mm. The existence of the global maximum can be
explained with reference to (6). The ohmic resistance of the
spiral is inversely proportional to

���
W

√
and it decreases as

the width of the spiral is increased. However, if the width is
increased while keeping K constant, the spacing between the
turns decreases thereby increasing the proximity effect
factor Rp/Ro. Hence, Rp/Ro sets a limit on the minimum
value that the ohmic resistance can attain. The width corre-
sponding to the minimum resistance is its optimum value,
and when this happens Qmax can attain its global maximum.
It is important to note that in WPT via SCMR, the
Q-factors of the resonators are very high due to the high
inductance and low electrical resistance of the resonators.
This has been validated by simulations and measurements
in [5–8]. This is the advantage of SCMR over other WPT
methods. Similarly, the Q-factors shown in Fig. 5 are high,
and in agreement with previous work on WPT via SCMR.

In order to verify the existence of global maximum
Q-factor, QGmax, we designed SCMR systems that utilized
the spiral parameters: N ¼ 5, K ¼ 10.2 mm, T ¼ 0.5 mm,
dout ¼ 100 mm, and W ¼ 0.2, 3.6, and 9 mm. The distance
between TX and RX resonators was set to l2 ¼ 150 mm. The
efficiency versus frequency plot for each of these designs is
shown in Fig. 6, which illustrates that the SCMR system
with the highest efficiency is the one that uses a spiral withFig. 4. Frequencies fr and fmax of a spiral versus N.
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W ¼ 3.6 mm. The result of Fig. 6 confirms the observation
from our previous discussion and results of Fig. 5.

Based on the results, we can propose a process of designing
spirals for globally optimal SCMR systems with maximum effi-
ciency as follows: (1) pick desired frequency, fo, for WPT; (2)
design spiral using (10) and satisfying S . 10W to exhibit
maximum Q-factor at fo; (3) use (14) to find the optimum cross-
sectional width of a spiral, W; (4) model SCMR system with the
designed spirals (see Fig. 1) in simulation software using optimal
W; (5) fine tune performance of SCMR design and fmax in simu-
lation software (e.g. by making minor adjustment in K).

Table 2 compares the parameters and efficiencies achieved
in some papers with the result that we achieved in the work.
The parameters of the work done in this paper are shown in
cases I, II, and III, respectively. In this paper, the efficiency
values is maximum at w ¼ 3.6 mm, which is at the Qmax as
described in (14).

I V . C O N C L U S I O N S

This paper analytically examines the optimal design of SCMR
systems that use spiral resonators. Specifically, a methodology,
which guarantees globally optimal spiral-based SCMR
systems, has been derived and verified.
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Table 1. fr and fmax of different spiral dimensions.

dout (mm) N K (mm) W (mm) T (mm) fr (MHz) fmax (MHz) Diff. (%)

50 8 3 2 2.0 129.35 124.20 4.2
50 12 2.1 1 0.5 93.60 96.07 2.6
50 5 5 2 2.0 220.13 215.60 2.1
75 15 2.5 1 1.0 50.58 49.00 3.2
75 11 3.4 3 2.0 61.95 62.00 0.1
75 7 5 2 0.5 102.39 98.2 4.3
100 19 2.6 1 1.5 29.41 29.1 1.1
100 14 3.5 2 1.0 39.81 40.6 2.0
100 10 5 3.5 0.5 57.43 57.7 0.5

Fig. 5. The local and global Qmax.

Fig. 6. The efficiency of the SCMR system for W¼0.2, 3.6, and 9.0 mm

Table 2. Comparison of different system SCMR parameters.

Cases N R or dout (cm) W or rc (mm) fmax (MHz) Distance (cm) Efficiency (%)

[6, 7] 5.25 30 2.2 9.5 200 45
[5] 4 12 0.11 30.55 15 25
[16] 3 6.0 4.4 76.5 18 24
[17] 3 30 1.5 8.3 3.8 51.4
Case I 5 10 0.2 118 15 52.8
Case II 5 10 3.6 122 15 76.4
Case III 5 10 9.0 124 15 47
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